92 research outputs found

    Lowland river responses to intraplate tectonism and climate forcing quantified with luminescence and cosmogenic 10Be

    Get PDF
    Intraplate tectonism has produced large-scale folding that steers regional drainage systems, such as the 1600 km-long Cooper Ck, en route to Australia’s continental depocentre at Lake Eyre. We apply cosmogenic 10Be exposure dating in bedrock, and luminescence dating in sediment, to quantify the erosional and depositional response of Cooper Ck where it incises the rising Innamincka Dome. The detachment of bedrock joint-blocks during extreme floods governs the minimum rate of incision (17.4±6.5 mm/ky) estimated using a numerical model of episodic erosion calibrated with our 10Be measurements. The last big-flood phase occurred no earlier than ~112–121ka. Upstream of the Innamincka Dome long-term rates of alluvial deposition, partly reflecting synclinal-basin subsidence, are estimated from 47 luminescence dates in sediments accumulated since ~270 ka. Sequestration of sediment in subsiding basins such as these may account for the lack of Quaternary accumulation in Lake Eyre, and moreover suggests that notions of a single primary depocentre at base-level may poorly represent lowland, arid-zone rivers. Over the period ~75–55 ka Cooper Ck changed from a bedload- dominant, laterally-active meandering river to a muddy anabranching channel network up to 60 km wide. We propose that this shift in river pattern was a product of base-level rise linked with the slowly deforming syncline–anticline structure, coupled with a climate-forced reduction in discharge. The uniform valley slope along this subsiding alluvial and rising bedrock system represents an adjustment between the relative rates of deformation and the ability of greatly enhanced flows at times during the Quaternary to incise the rising anticline. Hence, tectonic and climate controls are balanced in the long term

    Impact of Roots

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66547/2/10.1177_002193478601600306.pd

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Intoxicação por monofluoroacetato em animais

    Full text link
    O monofluoroacetato (MF) ou ácido monofluoroacético é utilizado na Austrália e Nova Zelândia no controle populacional de mamíferos nativos ou exóticos. O uso desse composto é proibido no Brasil, devido ao risco de intoxicação de seres humanos e de animais, uma vez que a substância permanece estável por décadas. No Brasil casos recentes de intoxicação criminosa ou acidental têm sido registrados. MF foi identificado em diversas plantas tóxicas, cuja ingestão determina "morte súbita"; de bovinos na África do Sul, Austrália e no Brasil. O modo de ação dessa substância baseia-se na formação do fluorocitrato, seu metabólito ativo, que bloqueia competitivamente a aconitase e o ciclo de Krebs, o que reduz produção de ATP. As espécies animais têm sido classificadas nas quatro Categorias em função do efeito provocado por MF: (I) no coração, (II) no sistema nervoso central (III) sobre o coração e sistema nervoso central ou (IV) com sintomatologia atípica. Neste trabalho, apresenta-se uma revisão crítica atualizada sobre essa substância. O diagnóstico da intoxicação por MF é realizado pelo histórico de ingestão do tóxico, pelos achados clínicos e confirmado por exame toxicológico. Uma forma peculiar de degeneração hidrópico-vacuolar das células epiteliais dos túbulos uriníferos contorcidos distais tem sido considerada como característica dessa intoxicação em algumas espécies. O tratamento da intoxicação por MF é um desafio, pois ainda não se conhece um agente capaz de reverte-la de maneira eficaz; o desfecho geralmente é fata

    Overview of the JET results in support to ITER

    Get PDF

    Journal of applied finance : JAF

    Get PDF
    Intraplate tectonism has produced large-scale folding that steers regional drainage systems, such as the 1600 km-long Cooper Ck, en route to Australia’s continental depocentre at Lake Eyre. We apply cosmogenic 10Be exposure dating in bedrock, and luminescence dating in sediment, to quantify the erosional and depositional response of Cooper Ck where it incises the rising Innamincka Dome. The detachment of bedrock joint-blocks during extreme floods governs the minimum rate of incision (17.4±6.5 mm/ky) estimated using a numerical model of episodic erosion calibrated with our 10Be measurements. The last big-flood phase occurred no earlier than ~112–121ka. Upstream of the Innamincka Dome long-term rates of alluvial deposition, partly reflecting synclinal-basin subsidence, are estimated from 47 luminescence dates in sediments accumulated since ~270 ka. Sequestration of sediment in subsiding basins such as these may account for the lack of Quaternary accumulation in Lake Eyre, and moreover suggests that notions of a single primary depocentre at base-level may poorly represent lowland, arid-zone rivers. Over the period ~75–55 ka Cooper Ck changed from a bedload- dominant, laterally-active meandering river to a muddy anabranching channel network up to 60 km wide. We propose that this shift in river pattern was a product of base-level rise linked with the slowly deforming syncline–anticline structure, coupled with a climate-forced reduction in discharge. The uniform valley slope along this subsiding alluvial and rising bedrock system represents an adjustment between the relative rates of deformation and the ability of greatly enhanced flows at times during the Quaternary to incise the rising anticline. Hence, tectonic and climate controls are balanced in the long term
    corecore