528 research outputs found
Ideal Bose gas in fractal dimensions and superfluid He in porous media
Physical properties of ideal Bose gas with the fractal dimensionality between
D=2 and D=3 are theoretically investigated. Calculation shows that the
characteristic features of the specific heat and the superfluid density of
ideal Bose gas in fractal dimensions are strikingly similar to those of
superfluid Helium-4 in porous media. This result indicates that the geometrical
factor is dominant over mutual interactions in determining physical properties
of Helium-4 in porous media.Comment: 13 pages, 6 figure
Spontaneous orbiting of two spheres levitated in a vibrated liquid
In the absence of gravity, particles can form a suspension in a liquid irrespective of the difference in density between the solid and the liquid. If such a suspension is subjected to vibration there is relative motion between the particles and the fluid which can lead to self-organization and pattern formation. Here we describe experiments carried out to investigate the behavior of two identical spheres suspended magnetically in a fluid, mimicking weightless conditions. Under vibration the spheres mutually attract and, for sufficiently large vibration amplitudes, the spheres are observed to spontaneously orbit each other. The collapse of the experimental data onto a single curve indicates that the instability occurs at a critical value of the streaming Reynolds number. Simulations repro- duce the observed behaviour qualitatively and quantitatively, and are used to identify the features of the flow that are responsible for this instability
Rayleigh-Taylor instability of crystallization waves at the superfluid-solid 4He interface
At the superfluid-solid 4He interface there exist crystallization waves
having much in common with gravitational-capillary waves at the interface
between two normal fluids. The Rayleigh-Taylor instability is an instability of
the interface which can be realized when the lighter fluid is propelling the
heavier one. We investigate here the analogues of the Rayleigh-Taylor
instability for the superfluid-solid 4He interface. In the case of a uniformly
accelerated interface the instability occurs only for a growing solid phase
when the magnitude of the acceleration exceeds some critical value independent
of the surface stiffness. For the Richtmyer-Meshkov limiting case of an
impulsively accelerated interface, the onset of instability does not depend on
the sign of the interface acceleration. In both cases the effect of
crystallization wave damping is to reduce the perturbation growth-rate of the
Taylor unstable interface.Comment: 8 pages, 2 figures, RevTe
XY models with disorder and symmetry-breaking fields in two dimensions
The combined effect of disorder and symmetry-breaking fields on the
two-dimensional XY model is examined. The study includes disorder in the
interaction among spins in the form of random phase shifts as well as disorder
in the local orientation of the field. The phase diagrams are determined and
the properties of the various phases and phase transitions are calculated. We
use a renormalization group approach in the Coulomb gas representation of the
model. Our results differ from those obtained for special cases in previous
works. In particular, we find a changed topology of the phase diagram that is
composed of phases with long-range order, quasi-long-range order, and
short-range order. The discrepancies can be ascribed to a breakdown of the
fugacity expansion in the Coulomb gas representation.
Implications for physical systems such as planar Josephson junctions and the
faceting of crystal surfaces are discussed.Comment: 17 pages Latex with 5 eps figures, change: acknowledgment extende
Surface Region of Superfluid Helium as an Inhomogeneous Bose-Condensed Gas
We present arguments that the low density surface region of self-bounded
superfluid He systems is an inhomogeneous dilute Bose gas, with almost all
of the atoms occupying the same single-particle state at . Numerical
evidence for this complete Bose-Einstein condensation was first given by the
many-body variational calculations of He droplets by Lewart, Pandharipande
and Pieper in 1988. We show that the low density surface region can be treated
rigorously using a generalized Gross-Pitaevskii equation for the Bose order
parameter.Comment: 4 pages, 1 Postscript figur
Hidden spin-current conservation in 2d Fermi liquids
We report the existence of regimes of the two dimensional Fermi liquid that
show unusual conservation of the spin current and may be tuned by varying some
parameter like the density of fermions. We show that for reasonable models of
the effective interaction the spin current may be conserved in general in 2d,
not only for a particular regime. Low temperature spin waves propagate
distinctively in these regimes and entirely new ``spin-acoustic'' modes are
predicted for scattering-dominated temperature ranges. These new
high-temperature propagating spin waves provide a clear signature for the
experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR
Outcomes following trauma laparotomy for hypotensive trauma patients: A UK military and civilian perspective.
BACKGROUND: The management of trauma patients has changed radically in the last decade, and studies have shown overall improvements in survival. However, reduction in mortality for the many may obscure a lack of progress in some high-risk patients. We sought to examine the outcomes for hypotensive patients requiring laparotomy in UK military and civilian cohorts. METHODS: We undertook a review of two prospectively maintained trauma databases: the UK Joint Theatre Trauma Registry for the military cohort (February 4, 2003, to September 21, 2014) and the trauma registry of the Royal London Hospital major trauma center (January 1, 2012, to January 1, 2017) for civilian patients. Adults undergoing trauma laparotomy within 90 minutes of arrival at the emergency department (ED) were included. RESULTS: Hypotension was present on arrival at the ED in 155 (20.4%) of 761 military patients. Mortality was higher in hypotensive casualties (25.8% vs. 9.7% in normotensive casualties; p < 0.001). Hypotension was present on arrival at the ED in 63 (35.7%) of 176 civilian patients. Mortality was higher in hypotensive patients (47.6% vs. 12.4% in normotensive patients; p < 0.001). In both cohorts of hypotensive patients, neither the average injury severity, the prehospital time, the ED arrival systolic blood pressure, nor mortality rate changed significantly during the study period. CONCLUSIONS: Despite improvements in survival after trauma for patients overall, the mortality for patients undergoing laparotomy who arrive at the ED with hypotension has not changed and appears stubbornly resistant to all efforts. Specific enquiry and research should continue to be directed at this high-risk group of patients. LEVEL OF EVIDENCE: Prognostic/Epidemiologic, level IV
Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems
Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium. The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics cannot leave, which has proved a rather stringent requirement in experiments. Recently, a proposal to seek such transitions in highly tuneable systems of cold atomic gases offers to probe this physics and, at the same time, to investigate the robustness of these transitions to quantum coherent effects. Here we specifically focus on the interplay between classical and quantum fluctuations in a simple driven open quantum model which, in the classical limit, reproduces a contact process, which is known to undergo a continuous transition in the "directed percolation" universality class. We derive an effective long-wavelength field theory for the present class of open spin systems and show that, due to quantum fluctuations, the nature of the transition changes from second to first order, passing through a bicritical point which appears to belong instead to the "tricritical directed percolation" class
- …