4,881 research outputs found

    Osmotic force resisting chain insertion in a colloidal suspension

    Full text link
    We consider the problem of inserting a stiff chain into a colloidal suspension of particles that interact with it through excluded volume forces. The free energy of insertion is associated with the work of creating a cavity devoid of colloid and sufficiently large to accomodate the chain. The corresponding work per unit length is the force that resists the entry of the chain into the colloidal suspension. In the case of a hard sphere fluid, this work can be calculated straightforwardly within the scaled particle theory; for solutions of flexible polymers, on the other hand, we employ simple scaling arguments. The forces computed in these ways are shown, for nanometer chain and colloid diameters, to be of the order of tens of pN for solution volume fraction for biophysical processes such as the ejection of DNA from viral capsids into the cell cytoplasm.Comment: 16 pages,3 figures. Accepted for publication in European Physical Journal

    Evaluation of methods of reducing community noise impact around San Jose municipal airport

    Get PDF
    A computer simulation of the airport noise impact on the surrounding communities was used to evaluate alternate operational procedures, improved technology, and land use conversion as methods of reducing community noise impact in the airport vicinity. In addition, a constant density population distribution was analyzed for possible application to other airport communities with fairly uniform population densities and similar aircraft operational patterns. The introduction of sound absorption material (SAM) was found to reduce community noise annoyance by over 25 percent, and the introduction of refan was found to reduce community annoyance by over 60 percent. Replacing the present aircraft was found to reduce the noise problem to very small proportions, and the introduction of an advanced technology twin was found to essentially eliminate the community noise problem

    The BetaCage, an ultra-sensitive screener for surface contamination

    Get PDF
    Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocontamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha- and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas per keV-m2^2-day and 0.1 alphas per m2^2-day, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expected to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95×\times95 cm2^2 sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.Comment: 5 pages, 3 figures, Proceedings of Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 201

    17q21.31 sub-haplotypes underlying H1-associated risk for Parkinson\u27s disease are associated with LRRC37A/2 expression in astrocytes

    Get PDF
    BACKGROUND: Parkinson\u27s disease (PD) is genetically associated with the H1 haplotype of the MAPT 17q.21.31 locus, although the causal gene and variants underlying this association have not been identified. METHODS: To better understand the genetic contribution of this region to PD and to identify novel mechanisms conferring risk for the disease, we fine-mapped the 17q21.31 locus by constructing discrete haplotype blocks from genetic data. We used digital PCR to assess copy number variation associated with PD-associated blocks, and used human brain postmortem RNA-seq data to identify candidate genes that were then further investigated using in vitro models and human brain tissue. RESULTS: We identified three novel H1 sub-haplotype blocks across the 17q21.31 locus associated with PD risk. Protective sub-haplotypes were associated with increased LRRC37A/2 copy number and expression in human brain tissue. We found that LRRC37A/2 is a membrane-associated protein that plays a role in cellular migration, chemotaxis and astroglial inflammation. In human substantia nigra, LRRC37A/2 was primarily expressed in astrocytes, interacted directly with soluble α-synuclein, and co-localized with Lewy bodies in PD brain tissue. CONCLUSION: These data indicate that a novel candidate gene, LRRC37A/2, contributes to the association between the 17q21.31 locus and PD via its interaction with α-synuclein and its effects on astrocytic function and inflammatory response. These data are the first to associate the genetic association at the 17q21.31 locus with PD pathology, and highlight the importance of variation at the 17q21.31 locus in the regulation of multiple genes other than MAPT and KANSL1, as well as its relevance to non-neuronal cell types

    Loran-C Latitude-Longitude Conversion at Sea : Programming Considerations

    Get PDF
    To aid programmers of Loran-C latitude-longitude conversion, we : 1. Provide reference to the literature. 2. Compare digital “processings-noise” for several arc-length methods. 3. Discuss some practical aspects of overland signal propagation (ASF) modeling for offshore navigation. Comparisons are made of the precision of arc-length routines as computer precision is reduced. Overland propagation delays (ASF's) are discussed and illustrated with observations from offshore New England. Present practice of Loran-C error budget modeling is then reviewed with the suggestion that additional terms be considered in future modeling

    Asymptotically optimal quantum channel reversal for qudit ensembles and multimode Gaussian states

    Get PDF
    We investigate the problem of optimally reversing the action of an arbitrary quantum channel C which acts independently on each component of an ensemble of n identically prepared d-dimensional quantum systems. In the limit of large ensembles, we construct the optimal reversing channel R* which has to be applied at the output ensemble state, to retrieve a smaller ensemble of m systems prepared in the input state, with the highest possible rate m/n. The solution is found by mapping the problem into the optimal reversal of Gaussian channels on quantum-classical continuous variable systems, which is here solved as well. Our general results can be readily applied to improve the implementation of robust long-distance quantum communication. As an example, we investigate the optimal reversal rate of phase flip channels acting on a multi-qubit register.Comment: 17 pages, 3 figure

    Test of classical nucleation theory on deeply supercooled high-pressure simulated silica

    Full text link
    We test classical nucleation theory (CNT) in the case of simulations of deeply supercooled, high density liquid silica, as modelled by the BKS potential. We find that at density ρ=4.38\rho=4.38~g/cm3^3, spontaneous nucleation of crystalline stishovite occurs in conventional molecular dynamics simulations at temperature T=3000 K, and we evaluate the nucleation rate J directly at this T via "brute force" sampling of nucleation events. We then use parallel, constrained Monte Carlo simulations to evaluate ΔG(n)\Delta G(n), the free energy to form a crystalline embryo containing n silicon atoms, at T=3000, 3100, 3200 and 3300 K. We find that the prediction of CNT for the n-dependence of ΔG(n)\Delta G(n) fits reasonably well to the data at all T studied, and at 3300 K yields a chemical potential difference between liquid and stishovite that matches independent calculation. We find that nn^*, the size of the critical nucleus, is approximately 10 silicon atoms at T=3300 K. At 3000 K, nn^* decreases to approximately 3, and at such small sizes methodological challenges arise in the evaluation of ΔG(n)\Delta G(n) when using standard techniques; indeed even the thermodynamic stability of the supercooled liquid comes into question under these conditions. We therefore present a modified approach that permits an estimation of ΔG(n)\Delta G(n) at 3000 K. Finally, we directly evaluate at T=3000 K the kinetic prefactors in the CNT expression for J, and find physically reasonable values; e.g. the diffusion length that Si atoms must travel in order to move from the liquid to the crystal embryo is approximately 0.2 nm. We are thereby able to compare the results for J at 3000 K obtained both directly and based on CNT, and find that they agree within an order of magnitude.Comment: corrected calculation, new figure, accepted in JC

    Conditional strategies and the evolution of cooperation in spatial public goods games

    Full text link
    The fact that individuals will most likely behave differently in different situations begets the introduction of conditional strategies. Inspired by this, we study the evolution of cooperation in the spatial public goods game, where besides unconditional cooperators and defectors, also different types of conditional cooperators compete for space. Conditional cooperators will contribute to the public good only if other players within the group are likely to cooperate as well, but will withhold their contribution otherwise. Depending on the number of other cooperators that are required to elicit cooperation of a conditional cooperator, the latter can be classified in as many types as there are players within each group. We find that the most cautious cooperators, such that require all other players within a group to be conditional cooperators, are the undisputed victors of the evolutionary process, even at very low synergy factors. We show that the remarkable promotion of cooperation is due primarily to the spontaneous emergence of quarantining of defectors, which become surrounded by conditional cooperators and are forced into isolated convex "bubbles" from where they are unable to exploit the public good. This phenomenon can be observed only in structured populations, thus adding to the relevance of pattern formation for the successful evolution of cooperation.Comment: 7 two-column pages, 7 figures; accepted for publication in Physical Review

    Chronic Pancreatitis and Neoplasia: Correlation or Coincidence

    Get PDF
    Any link between pancreatic carcinoma and chronic pancreatitis could reflect the malignant potential of a chronic inflammatory process. Four patients with ductal adenocarcinomas had a long history of pancreatic pain (median duration 5 years) and showed clearcut evidence of chronic pancreatitis “downstream” of the tumour. Four were alcoholics and two heavy smokers. These four cases arose within a surgical series of approximately 250 patients with chronic pancreatitis, giving an incidence of 1.6 per cent. The incidence and anatomical distribution of carcinoma and chronic pancreatitis could possibly be consistent with a casual relationship
    corecore