375 research outputs found

    Unitary One Matrix Models: String Equations and Flows

    Get PDF
    We review the Symmetric Unitary One Matrix Models. In particular we discuss the string equation in the operator formalism, the mKdV flows and the Virasoro Constraints. We focus on the \t-function formalism for the flows and we describe its connection to the (big cell of the) Sato Grassmannian \Gr via the Plucker embedding of \Gr into a fermionic Fock space. Then the space of solutions to the string equation is an explicitly computable subspace of \Gr\times\Gr which is invariant under the flows.Comment: 20 pages (Invited talk delivered by M. J. Bowick at the Vth Regional Conference on Mathematical Physics, Edirne Turkey: December 15-22, 1991.

    The Flat Phase of Crystalline Membranes

    Get PDF
    We present the results of a high-statistics Monte Carlo simulation of a phantom crystalline (fixed-connectivity) membrane with free boundary. We verify the existence of a flat phase by examining lattices of size up to 1282128^2. The Hamiltonian of the model is the sum of a simple spring pair potential, with no hard-core repulsion, and bending energy. The only free parameter is the the bending rigidity κ\kappa. In-plane elastic constants are not explicitly introduced. We obtain the remarkable result that this simple model dynamically generates the elastic constants required to stabilise the flat phase. We present measurements of the size (Flory) exponent ν\nu and the roughness exponent ζ\zeta. We also determine the critical exponents η\eta and ηu\eta_u describing the scale dependence of the bending rigidity (κ(q)∼q−η\kappa(q) \sim q^{-\eta}) and the induced elastic constants (λ(q)∼μ(q)∼qηu\lambda(q) \sim \mu(q) \sim q^{\eta_u}). At bending rigidity κ=1.1\kappa = 1.1, we find ν=0.95(5)\nu = 0.95(5) (Hausdorff dimension dH=2/ν=2.1(1)d_H = 2/\nu = 2.1(1)), ζ=0.64(2)\zeta = 0.64(2) and ηu=0.50(1)\eta_u = 0.50(1). These results are consistent with the scaling relation ζ=(2+ηu)/4\zeta = (2+\eta_u)/4. The additional scaling relation η=2(1−ζ)\eta = 2(1-\zeta) implies η=0.72(4)\eta = 0.72(4). A direct measurement of η\eta from the power-law decay of the normal-normal correlation function yields η≈0.6\eta \approx 0.6 on the 1282128^2 lattice.Comment: Latex, 31 Pages with 14 figures. Improved introduction, appendix A and discussion of numerical methods. Some references added. Revised version to appear in J. Phys.

    Topological Sound and Flocking on Curved Surfaces

    Full text link
    Active systems on curved geometries are ubiquitous in the living world. In the presence of curvature orientationally ordered polar flocks are forced to be inhomogeneous, often requiring the presence of topological defects even in the steady state due to the constraints imposed by the topology of the underlying surface. In the presence of spontaneous flow the system additionally supports long-wavelength propagating sound modes which get gapped by the curvature of the underlying substrate. We analytically compute the steady state profile of an active polar flock on a two-sphere and a catenoid, and show that curvature and active flow together result in symmetry protected topological modes that get localized to special geodesics on the surface (the equator or the neck respectively). These modes are the analogue of edge states in electronic quantum Hall systems and provide unidirectional channels for information transport in the flock, robust against disorder and backscattering.Comment: 15 pages, 6 figure

    The Cosmological Kibble Mechanism in the Laboratory: String Formation in Liquid Crystals

    Get PDF
    We have observed the production of strings (disclination lines and loops) via the Kibble mechanism of domain (bubble) formation in the isotropic to nematic phase transition of a sample of uniaxial nematic liquid crystal. The probablity of string formation per bubble is measured to be 0.33±0.010.33 \pm 0.01. This is in good agreement with the theoretical value 1/π1/ \pi expected in two dimensions for the order parameter space S2/Z2S^2/{\bf Z}_2 of a simple uniaxial nematic liquid crystal.Comment: 17 pages, in TEX, 2 figures (not included, available on request

    First-order transition of tethered membranes in 3d space

    Full text link
    We study a model of phantom tethered membranes, embedded in three-dimensional space, by extensive Monte Carlo simulations. The membranes have hexagonal lattice structure where each monomer is interacting with six nearest-neighbors (NN). Tethering interaction between NN, as well as curvature penalty between NN triangles are taken into account. This model is new in the sense that NN interactions are taken into account by a truncated Lennard-Jones potential including both repulsive and attractive parts. The main result of our study is that the system undergoes a first-order crumpling transition from low temperature flat phase to high temperature crumpled phase, in contrast with early numerical results on models of tethered membranes.Comment: 5 pages, 6 figure
    • …
    corecore