293 research outputs found

    The Galactic Distribution of OH/IR Stars

    Full text link
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    High-throughput 18K SNP array to assess genetic variability of the main grapevine cultivars from Sicily

    Get PDF
    The viticulture of Sicily, for its vocation, is one of the most important and ancient forms in Italy. Autochthonous grapevine cultivars, many of which known throughout the world, have always been cultivated in the island from many centuries. With the aim to preserve this large grapevine diversity, previous studies have already started to assess the genetic variability among the Sicilian cultivars by using morphological and microsatellite markers. In this study, simple sequence repeat (SSR) were utilized to verify the true-to-typeness of a large clone collection (101) belonging to 21 biotypes of the most 10 cultivated Sicilian cultivars. Afterwards, 42 Organization Internationale de la Vigne et du Vin (OIV) descriptors and a high-throughput single nucleotide polymorphism (SNP) genotyping array (Vitis18kSNP) were applied to assess genetic variability among cultivars and biotypes of the same cultivar. Ampelographic traits and high-throughput SNP genotyping platforms provided an accuracy estimation of genetic diversity in the Sicilian germplasm, showing the relationships among cultivars by cluster and multivariate analyses. The large SNP panel defined sub-clusters unable to discern among biotypes, previously classified by ampelographic analysis, belonging to each cultivar. These results suggested that a very large number of SNP did not cover the genome regions harboring few morphological traits. Genetic structure of the collection revealed a clear optimum number of groups for K = 3, clustering in the same group a significant portion of family-related genotypes. Parentage analysis highlighted significant relationships among Sicilian grape cultivars and Sangiovese, as already reported, but also the first evidences of the relationships between Nero d’Avola and both Inzolia and Catarratto. Finally, a small panel of highly informative markers (12 SNPs) allowed us to isolate a private profile for each Sicilian cultivar, providing a new tool for cultivar identification

    Resveratrol increases BRCA1 and BRCA2 mRNA expression in breast tumour cell lines

    Get PDF
    International audienceThe phytochemical resveratrol, found in grapes, berries and peanuts, has been found to possess cancer chemopreventive effects by inhibiting diverse cellular events associated with tumour initiation, promotion and progression. Resveratrol is also a phyto-oestrogen, binds to and activates oestrogen receptors that regulate the transcription of oestrogen-responsive target genes such as the breast cancer susceptibility genes BRCA1 and BRCA2. We investigated the effects of resveratrol on BRCA1 and BRCA2 expression in human breast cancer cell lines (MCF7, HBL 100 and MDA-MB 231) using quantitative real-time RT-PCR, and by perfusion chromatography of the proteins. All cell lines were treated with 30 microM resveratrol. The expressions of BRCA1 and BRCA2 mRNAs were increased although no change in the expression of the proteins were found. These data indicate that resveratrol at 30 micro M can increase expression of genes involved in the aggressiveness of human breast tumour cell lines

    Genetic Co-Occurrence Network across Sequenced Microbes

    Get PDF
    The phenotype of any organism on earth is, in large part, the consequence of interplay between numerous gene products encoded in the genome, and such interplay between gene products affects the evolutionary fate of the genome itself through the resulting phenotype. In this regard, contemporary genomes can be used as molecular records that reveal associations of various genes working in their natural lifestyles. By analyzing thousands of orthologs across ~600 bacterial species, we constructed a map of gene-gene co-occurrence across much of the sequenced biome. If genes preferentially co-occur in the same organisms, they were called herein correlogs; in the opposite case, called anti-correlogs. To quantify correlogy and anti-correlogy, we alleviated the contribution of indirect correlations between genes by adapting ideas developed for reverse engineering of transcriptional regulatory networks. Resultant correlogous associations are highly enriched for physically interacting proteins and for co-expressed transcripts, clearly differentiating a subgroup of functionally-obligatory protein interactions from conditional or transient interactions. Other biochemical and phylogenetic properties were also found to be reflected in correlogous and anti-correlogous relationships. Additionally, our study elucidates the global organization of the gene association map, in which various modules of correlogous genes are strikingly interconnected by anti-correlogous crosstalk between the modules. We then demonstrate the effectiveness of such associations along different domains of life and environmental microbial communities. These phylogenetic profiling approaches infer functional coupling of genes regardless of mechanistic details, and may be useful to guide exogenous gene import in synthetic biology.Comment: Supporting information is available at PLoS Computational Biolog

    A Genome-Wide Characterization of MicroRNA Genes in Maize

    Get PDF
    MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. We conducted a genome-wide survey of maize miRNA genes, characterizing their structure, expression, and evolution. Computational approaches based on homology and secondary structure modeling identified 150 high-confidence genes within 26 miRNA families. For 25 families, expression was verified by deep-sequencing of small RNA libraries that were prepared from an assortment of maize tissues. PCR–RACE amplification of 68 miRNA transcript precursors, representing 18 families conserved across several plant species, showed that splice variation and the use of alternative transcriptional start and stop sites is common within this class of genes. Comparison of sequence variation data from diverse maize inbred lines versus teosinte accessions suggest that the mature miRNAs are under strong purifying selection while the flanking sequences evolve equivalently to other genes. Since maize is derived from an ancient tetraploid, the effect of whole-genome duplication on miRNA evolution was examined. We found that, like protein-coding genes, duplicated miRNA genes underwent extensive gene-loss, with ∼35% of ancestral sites retained as duplicate homoeologous miRNA genes. This number is higher than that observed with protein-coding genes. A search for putative miRNA targets indicated bias towards genes in regulatory and metabolic pathways. As maize is one of the principal models for plant growth and development, this study will serve as a foundation for future research into the functional roles of miRNA genes

    Pantropical variability in tree crown allometry

    Get PDF
    Aim: Tree crowns determine light interception, carbon and water exchange. Thus, understanding the factors causing tree crown allometry to vary at the tree and stand level matters greatly for the development of future vegetation modelling and for the calibration of remote sensing products. Nevertheless, we know little about large‐scale variation and determinants in tropical tree crown allometry. In this study, we explored the continental variation in scaling exponents of site‐specific crown allometry and assessed their relationships with environmental and stand‐level variables in the tropics. / Location: Global tropics. / Time period: Early 21st century. / Major taxa studied: Woody plants. / Methods: Using a dataset of 87,737 trees distributed among 245 forest and savanna sites across the tropics, we fitted site‐specific allometric relationships between crown dimensions (crown depth, diameter and volume) and stem diameter using power‐law models. Stand‐level and environmental drivers of crown allometric relationships were assessed at pantropical and continental scales. / Results: The scaling exponents of allometric relationships between stem diameter and crown dimensions were higher in savannas than in forests. We identified that continental crown models were better than pantropical crown models and that continental differences in crown allometric relationships were driven by both stand‐level (wood density) and environmental (precipitation, cation exchange capacity and soil texture) variables for both tropical biomes. For a given diameter, forest trees from Asia and savanna trees from Australia had smaller crown dimensions than trees in Africa and America, with crown volumes for some Asian forest trees being smaller than those of trees in African forests. / Main conclusions: Our results provide new insight into geographical variability, with large continental differences in tropical tree crown allometry that were driven by stand‐level and environmental variables. They have implications for the assessment of ecosystem function and for the monitoring of woody biomass by remote sensing techniques in the global tropics
    corecore