9,808 research outputs found
Intermediate load modules for test and evaluation: Flat-Plate Solar Array Project
Two versions of a 36 stainless steel solar module were built. The first version was built as a commercial module for marine applications and was purchased for evaluation by JPL. Design deficiencies were identified as a result of the evaluation. The second version was built and the improvements that resulted from design changes are described. Assembly problems, electrical performance, and qualification test results are provided
Investigation of tidal displacements of the Earth's surface by laser ranging to GEOS-3
An analysis of laser ranging data from three stations was carried out in an attempt to measure the geometric Earth tide. Two different approaches to the problem were investigated. The dynamic method computes pass to pass apparent movements in stations height relative to short arcs fitted to several passes of data from the same station by the program GEODYNE. The quasi-geometric method reduces the dependence on unmodelled satellite dynamics to a knowledge of only the radial position of the satellite by considering two station simultaneous ranging at the precise time that the satellite passes through the plane defined by two stations and the center of mass of the Earth
Sediment and fluvial particulate carbon flux from an eroding peatland catchment
Erosion and the associated loss of carbon is a major environmental concern in many peatlands and remains difficult to accurately quantify beyond the plot scale. Erosion was measured in an upland blanket peatland catchment (0.017 km2) in northern England using Structure‐from‐Motion (SfM) photogrammetry, sediment traps and stream sediment sampling at different spatial scales. A net median topographic change of –27 mm yr–1 was recorded by SfM over the 12‐month monitoring period for the entire surveyed area (598 m2). Within the entire surveyed area there were six nested catchments where both SfM and sediment traps were used to measure erosion. Substantial amounts of peat were captured in sediment traps during summer storm events after two months of dry weather where desiccation of the peat surface occurred. The magnitude of topographic change for the six nested catchments determined by SfM (mean value: 5.3 mm, standard deviation: 5.2 mm) was very different to the areal average derived from sediment traps (mean value: –0.3 mm, standard deviation: 0.1 mm). Thus direct interpolation of peat erosion from local net topographic change into sediment yield at the catchment outlet appears problematic. Peat loss measured at the hillslope scale was not representative of that at the catchment scale. Stream sediment sampling at the outlet of the research catchment (0.017 km2) suggested that the yields of suspended sediment and particulate organic carbon were 926.3 t km–2 yr–1 and 340.9 t km–2 yr–1 respectively, with highest losses occurring during the autumn. Both freeze–thaw during winter and desiccation during long periods of dry weather in spring and summer were identified as important peat weathering processes during the study. Such weathering was a key enabler of subsequent fluvial peat loss from the catchment
Gamma-ray emission from dark matter wakes of recoiled black holes
A new scenario for the emission of high-energy gamma-rays from dark matter
annihilation around massive black holes is presented. A black hole can leave
its parent halo, by means of gravitational radiation recoil, in a merger event
or in the asymmetric collapse of its progenitor star. A recoiled black hole
which moves on an almost-radial orbit outside the virial radius of its central
halo, in the cold dark matter background, reaches its apapsis in a finite time.
Near or at the apapsis passage, a high-density wake extending over a large
radius of influence, forms around the black hole. It is shown that significant
gamma-ray emission can result from the enhancement of neutralino annihilation
in these wakes. At its apapsis passage, a black hole is shown to produce a
flash of high-energy gamma-rays whose duration is determined by the mass of the
black hole and the redshift at which it is ejected. The ensemble of such black
holes in the Hubble volume is shown to produce a diffuse high-energy gamma-ray
background whose magnitude is compared to the diffuse emission from dark matter
haloes alone.Comment: version to appear in Astrophysical Journal letters (labels on Fig. 3
corrected
Age, Metallicity and Star Formation History of Cluster Galaxies at z~0.3 F
We investigate the color-magnitude distribution in the rich cluster AC 118 at
z=0.31. The sample is selected by the photometric redshift technique, allowing
to study a wide range of properties of stellar populations, and is complete in
the K-band, allowing to study these properties up to a given galaxy mass. We
use galaxy templates based on population synthesis models to translate the
physical properties of the stellar populations - formation epoch, time-scale of
star formation, and metallicity - into observed magnitudes and colors. In this
way we show that a sharp luminosity-metallicity relation is inferred without
any assumption on the galaxy formation scenario (either monolithic or
hierarchical). Our data exclude significant differences in star formation
histories along the color-magnitude relation, and therefore confirm a pure
metallicity interpretation for its origin, with an early (z~5) formation epoch
for the bulk of stellar populations. The dispersion in the color-magnitude
diagram implies that fainter galaxies in our sample (K~18) ceased to form stars
as late as z~0.5, in agreement with the picture that these galaxies were
recently accreted into the cluster environment. The trend with redshift of the
total stellar mass shows that half of the luminous mass in AC 118 was already
formed at $z~2, but also that 20% of the stars formed at z<1.Comment: 16 pages, 10 figures. ApJ in pres
Towards a Holistic View of the Heating and Cooling of the Intracluster Medium
(Abridged) X-ray clusters are conventionally divided into two classes: "cool
core" (CC) clusters and "non-cool core" (NCC) clusters. Yet relatively little
attention has been given to the origins of this dichotomy and, in particular,
to the energetics and thermal histories of the two classes. We develop a model
for the entropy profiles of clusters starting from the configuration
established by gravitational shock heating and radiative cooling. At large
radii, gravitational heating accounts for the observed profiles and their
scalings well. However, at small and intermediate radii, radiative cooling and
gravitational heating cannot be combined to explain the observed profiles of
either type of cluster. The inferred entropy profiles of NCC clusters require
that material is preheated prior to cluster collapse in order to explain the
absence of low entropy (cool) material in these systems. We show that a similar
modification is also required in CC clusters in order to match their properties
at intermediate radii. In CC clusters, this modification is unstable, and an
additional process is required to prevent cooling below a temperature of a few
keV. We show that this can be achieved by adding a self-consistent AGN feedback
loop in which the lowest-entropy, most rapidly cooling material is heated so
that it rises buoyantly to mix with material at larger radii. The resulting
model does not require fine tuning and is in excellent agreement with a wide
variety of observational data. Some of the other implications of this model are
briefly discussed.Comment: 27 pages, 13 figures, MNRAS accepted. Discussion of cluster heating
energetics extended, results unchange
Chandra Observations of low velocity dispersion groups
Deviations of galaxy groups from cluster scaling relations can be understood
in terms of an excess of entropy in groups. The main effect of this excess is
to reduce the density and thus luminosity of the intragroup gas. Given this,
groups should also should show a steep relationship between X-ray luminosity
and velocity dispersion. However, previous work suggests that this is not the
case with many measuring slopes flatter than the cluster relation.
Examining the group L_X:\sigma relation shows that much of the flattening is
caused by a small subset of groups which show very high X-ray luminosities for
their velocity dispersions (or vice versa).
Detailed Chandra study of two such groups shows that earlier ROSAT results
were subject to significant (~30-40%) point source contamination, but confirm
that a significant hot IGM is present in these groups, although these are two
of the coolest systems in which intergalactic X-ray emission has been detected.
Their X-ray properties are shown to be broadly consistent with those of other
galaxy groups, although the gas entropy in NGC 1587 is unusually low, and its
X-ray luminosity correspondingly high for its temperature, compared to most
groups.
This leads us to suggest that the velocity dispersion in these systems has
been reduced in some way, and we consider how this might have come about.Comment: Accepted for publication in Ap
- …