12,541 research outputs found
Distilling entanglement from arbitrary resources
We obtain the general formula for the optimal rate at which singlets can be
distilled from any given noisy and arbitrarily correlated entanglement
resource, by means of local operations and classical communication (LOCC). Our
formula, obtained by employing the quantum information spectrum method, reduces
to that derived by Devetak and Winter, in the special case of an i.i.d.
resource. The proofs rely on a one-shot version of the so-called "hashing
bound," which in turn provides bounds on the one-shot distillable entanglement
under general LOCC.Comment: 24 pages, article class, no figure. v2: references added, published
versio
Evanescent single-molecule biosensing with quantum limited precision
Sensors that are able to detect and track single unlabelled biomolecules are
an important tool both to understand biomolecular dynamics and interactions at
nanoscale, and for medical diagnostics operating at their ultimate detection
limits. Recently, exceptional sensitivity has been achieved using the strongly
enhanced evanescent fields provided by optical microcavities and nano-sized
plasmonic resonators. However, at high field intensities photodamage to the
biological specimen becomes increasingly problematic. Here, we introduce an
optical nanofibre based evanescent biosensor that operates at the fundamental
precision limit introduced by quantisation of light. This allows a four
order-of-magnitude reduction in optical intensity whilst maintaining
state-of-the-art sensitivity. It enable quantum noise limited tracking of
single biomolecules as small as 3.5 nm, and surface-molecule interactions to be
monitored over extended periods. By achieving quantum noise limited precision,
our approach provides a pathway towards quantum-enhanced single-molecule
biosensors.Comment: 17 pages, 4 figures, supplementary informatio
Biased EPR entanglement and its application to teleportation
We consider pure continuous variable entanglement with non-equal correlations
between orthogonal quadratures. We introduce a simple protocol which equates
these correlations and in the process transforms the entanglement onto a state
with the minimum allowed number of photons. As an example we show that our
protocol transforms, through unitary local operations, a single squeezed beam
split on a beam splitter into the same entanglement that is produced when two
squeezed beams are mixed orthogonally. We demonstrate that this technique can
in principle facilitate perfect teleportation utilising only one squeezed beam.Comment: 8 pages, 5 figure
Collisions of boosted black holes: perturbation theory prediction of gravitational radiation
We consider general relativistic Cauchy data representing two nonspinning,
equal-mass black holes boosted toward each other. When the black holes are
close enough to each other and their momentum is sufficiently high, an
encompassing apparent horizon is present so the system can be viewed as a
single, perturbed black hole. We employ gauge-invariant perturbation theory,
and integrate the Zerilli equation to analyze these time-asymmetric data sets
and compute gravitational wave forms and emitted energies. When coupled with a
simple Newtonian analysis of the infall trajectory, we find striking agreement
between the perturbation calculation of emitted energies and the results of
fully general relativistic numerical simulations of time-symmetric initial
data.Comment: 5 pages (RevTex 3.0 with 3 uuencoded figures), CRSR-107
Non-linear optomechanical measurement of mechanical motion
Precision measurement of non-linear observables is an important goal in all
facets of quantum optics. This allows measurement-based non-classical state
preparation, which has been applied to great success in various physical
systems, and provides a route for quantum information processing with otherwise
linear interactions. In cavity optomechanics much progress has been made using
linear interactions and measurement, but observation of non-linear mechanical
degrees-of-freedom remains outstanding. Here we report the observation of
displacement-squared thermal motion of a micro-mechanical resonator by
exploiting the intrinsic non-linearity of the radiation pressure interaction.
Using this measurement we generate bimodal mechanical states of motion with
separations and feature sizes well below 100~pm. Future improvements to this
approach will allow the preparation of quantum superposition states, which can
be used to experimentally explore collapse models of the wavefunction and the
potential for mechanical-resonator-based quantum information and metrology
applications.Comment: 8 pages, 4 figures, extensive supplementary material available with
published versio
Dephasing representation of quantum fidelity for general pure and mixed states
General semiclassical expression for quantum fidelity (Loschmidt echo) of
arbitrary pure and mixed states is derived. It expresses fidelity as an
interference sum of dephasing trajectories weighed by the Wigner function of
the initial state, and does not require that the initial state be localized in
position or momentum. This general dephasing representation is special in that,
counterintuitively, all of fidelity decay is due to dephasing and none due to
the decay of classical overlaps. Surprising accuracy of the approximation is
justified by invoking the shadowing theorem: twice--both for physical
perturbations and for numerical errors. It is shown how the general expression
reduces to the special forms for position and momentum states and for wave
packets localized in position or momentum. The superiority of the general over
the specialized forms is explained and supported by numerical tests for wave
packets, non-local pure states, and for simple and random mixed states. The
tests are done in non-universal regimes in mixed phase space where detailed
features of fidelity are important. Although semiclassically motivated, present
approach is valid for abstract systems with a finite Hilbert basis provided
that the discrete Wigner transform is used. This makes the method applicable,
via a phase space approach, e. g., to problems of quantum computation.Comment: 11 pages, 4 figure
Thermodynamic phase transitions for Pomeau-Manneville maps
We study phase transitions in the thermodynamic description of
Pomeau-Manneville intermittent maps from the point of view of infinite ergodic
theory, which deals with diverging measure dynamical systems. For such systems,
we use a distributional limit theorem to provide both a powerful tool for
calculating thermodynamic potentials as also an understanding of the dynamic
characteristics at each instability phase. In particular, topological pressure
and Renyi entropy are calculated exactly for such systems. Finally, we show the
connection of the distributional limit theorem with non-Gaussian fluctuations
of the algorithmic complexity proposed by Gaspard and Wang [Proc. Natl. Acad.
Sci. USA 85, 4591 (1988)].Comment: 5 page
Thermographic Detection o Conducting Contaminants in Composite Materials Using Microwave Excitation
This paper describes microwave-source time-resolved infrared radiometry (MW-TRIR) as a method for the detection and characterization of microwave absorption by conductive fibers and other absorbing regions in dielectric materials. Due to recent technical developments in the speed, detector array size, and sensitivity of infrared focalplane arrays, time-resolved infrared radiometry has evolved into an important NDE tool which allows fast area inspection at high spatial resolution. While much prior work has focused on the detection of structural defects or disbonds in a variety of materials [1,2], the increasing importance of composite materials requires new approaches to inspection which allow characterization of local material properties. Defects in such materials may have little thermal contrast compared to the matrix material and may be invisible using conventional infrared radiometry methods. However, where the embedding material is a weak microwave absorber, localized microwave absorbing regions can be detected easily. There are three different classes of absorption processes: (1) dielectric loss (e.g. water), (2) magnetic loss, and (3) Joule heating (e.g. electromagnetic radiation interaction with conducting fibers)
Recommended from our members
Electrospray synthesis of PLGA TIPS microspheres
We successfully demonstrate the synthesis of polymer microspheres using a single electrospray source, and show their physical characterisation. Electrospray has proven to be a versatile method to manufacture particles, giving tight control over size with quasi-monodisperse size distributions. It is a liquid atomisation technique that generates a monodisperse population of highly charged liquid droplets over a broad size range (nanometres to tens of microns). The droplets contain liquid precursors for the in-flight synthesis of particles, and control over the trajectory of these droplets can be precisely manipulated with the use of electric fields to drive them to a grounded substrate. This study reports a method to synthesize poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray and thermally induced phase separation (TIPS) techniques, followed by subsequent freeze-drying, for particle production. These microspheres are of interest as vehicles for controlled drug release systems
- …