14,289 research outputs found
Analyticity of the SRB measure for a class of simple Anosov flows
We consider perturbations of the Hamiltonian flow associated with the
geodesic flow on a surface of constant negative curvature. We prove that, under
a small perturbation, not necessarely of Hamiltonian character, the SRB measure
associated to the flow exists and is analytic in the strength of the
perturbation. An explicit example of "thermostatted" dissipative dynamics is
constructed.Comment: 23 pages, corrected typo
Inversely Unstable Solutions of Two-Dimensional Systems on Genus-p Surfaces and the Topology of Knotted Attractors
In this paper, we will show that a periodic nonlinear, time-varying
dissipative system that is defined on a genus-p surface contains one or more
invariant sets which act as attractors. Moreover, we shall generalize a result
in [Martins, 2004] and give conditions under which these invariant sets are not
homeomorphic to a circle individually, which implies the existence of chaotic
behaviour. This is achieved by studying the appearance of inversely unstable
solutions within each invariant set.Comment: 19 pages with 20 figures, AMS La-TeX, to be published in
International Journal of Bifurcation and Chao
Teleportation of continuous variable polarisation states
This paper discusses methods for the optical teleportation of continuous
variable polarisation states. We show that using two pairs of entangled beams,
generated using four squeezed beams, perfect teleportation of optical
polarisation states can be performed. Restricting ourselves to 3 squeezed
beams, we demonstrate that polarisation state teleportation can still exceed
the classical limit. The 3-squeezer schemes involve either the use of quantum
non-demolition measurement or biased entanglement generated from a single
squeezed beam. We analyse the efficacies of these schemes in terms of fidelity,
signal transfer coefficients and quantum correlations
Recovery of continuous wave squeezing at low frequencies
We propose and demonstrate a system that produces squeezed vacuum using a
pair of optical parametric amplifiers. This scheme allows the production of
phase sidebands on the squeezed vacuum which facilitate phase locking in
downstream applications. We observe strong, stably locked, continuous wave
vacuum squeezing at frequencies as low as 220 kHz. We propose an alternative
resonator configuration to overcome low frequency squeezing degradation caused
by the optical parametric amplifiers.Comment: 9 pages, 4 figure
Quantum optomechanics beyond the quantum coherent oscillation regime
Interaction with a thermal environment decoheres the quantum state of a
mechanical oscillator. When the interaction is sufficiently strong, such that
more than one thermal phonon is introduced within a period of oscillation,
quantum coherent oscillations are prevented. This is generally thought to
preclude a wide range of quantum protocols. Here, we introduce a pulsed
optomechanical protocol that allows ground state cooling, general linear
quantum non-demolition measurements, optomechanical state swaps, and quantum
state preparation and tomography without requiring quantum coherent
oscillations. Finally we show how the protocol can break the usual thermal
limit for sensing of impulse forces.Comment: 6 pages, 3 figure
Squeezed state purification with linear optics and feed forward
A scheme for optimal and deterministic linear optical purification of mixed
squeezed Gaussian states is proposed and experimentally demonstrated. The
scheme requires only linear optical elements and homodyne detectors, and allows
the balance between purification efficacy and squeezing degradation to be
controlled. One particular choice of parameters gave a ten-fold reduction of
the thermal noise with a corresponding squeezing degradation of only 11%. We
prove optimality of the protocol, and show that it can be used to enhance the
performance of quantum informational protocols such as dense coding and
entanglement generation.Comment: 4 pages, 3 figure
An experimental investigation of criteria for continuous variable entanglement
We generate a pair of entangled beams from the interference of two amplitude
squeezed beams. The entanglement is quantified in terms of EPR-paradox [Reid88]
and inseparability [Duan00] criteria, with observed results of and , respectively. Both results clearly beat the standard quantum
limit of unity. We experimentally analyze the effect of decoherence on each
criterion and demonstrate qualitative differences. We also characterize the
number of required and excess photons present in the entangled beams and
provide contour plots of the efficacy of quantum information protocols in terms
of these variables.Comment: 4 pages, 5 figure
Non-linear optomechanical measurement of mechanical motion
Precision measurement of non-linear observables is an important goal in all
facets of quantum optics. This allows measurement-based non-classical state
preparation, which has been applied to great success in various physical
systems, and provides a route for quantum information processing with otherwise
linear interactions. In cavity optomechanics much progress has been made using
linear interactions and measurement, but observation of non-linear mechanical
degrees-of-freedom remains outstanding. Here we report the observation of
displacement-squared thermal motion of a micro-mechanical resonator by
exploiting the intrinsic non-linearity of the radiation pressure interaction.
Using this measurement we generate bimodal mechanical states of motion with
separations and feature sizes well below 100~pm. Future improvements to this
approach will allow the preparation of quantum superposition states, which can
be used to experimentally explore collapse models of the wavefunction and the
potential for mechanical-resonator-based quantum information and metrology
applications.Comment: 8 pages, 4 figures, extensive supplementary material available with
published versio
- âŠ