2,500 research outputs found

    The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study

    Full text link
    Due to the exponential growth of scientific publications on the Web, there is a pressing need to tag each paper with fine-grained topics so that researchers can track their interested fields of study rather than drowning in the whole literature. Scientific literature tagging is beyond a pure multi-label text classification task because papers on the Web are prevalently accompanied by metadata information such as venues, authors, and references, which may serve as additional signals to infer relevant tags. Although there have been studies making use of metadata in academic paper classification, their focus is often restricted to one or two scientific fields (e.g., computer science and biomedicine) and to one specific model. In this work, we systematically study the effect of metadata on scientific literature tagging across 19 fields. We select three representative multi-label classifiers (i.e., a bag-of-words model, a sequence-based model, and a pre-trained language model) and explore their performance change in scientific literature tagging when metadata are fed to the classifiers as additional features. We observe some ubiquitous patterns of metadata's effects across all fields (e.g., venues are consistently beneficial to paper tagging in almost all cases), as well as some unique patterns in fields other than computer science and biomedicine, which are not explored in previous studies.Comment: 11 pages; Accepted to WWW 202

    Learning Multiplex Embeddings on Text-rich Networks with One Text Encoder

    Full text link
    In real-world scenarios, texts in a network are often linked by multiple semantic relations (e.g., papers in an academic network are referenced by other publications, written by the same author, or published in the same venue), where text documents and their relations form a multiplex text-rich network. Mainstream text representation learning methods use pretrained language models (PLMs) to generate one embedding for each text unit, expecting that all types of relations between texts can be captured by these single-view embeddings. However, this presumption does not hold particularly in multiplex text-rich networks. Along another line of work, multiplex graph neural networks (GNNs) directly initialize node attributes as a feature vector for node representation learning, but they cannot fully capture the semantics of the nodes' associated texts. To bridge these gaps, we propose METERN, a new framework for learning Multiplex Embeddings on TExt-Rich Networks. In contrast to existing methods, METERN uses one text encoder to model the shared knowledge across relations and leverages a small number of parameters per relation to derive relation-specific representations. This allows the encoder to effectively capture the multiplex structures in the network while also preserving parameter efficiency. We conduct experiments on nine downstream tasks in five networks from both academic and e-commerce domains, where METERN outperforms baselines significantly and consistently. The code is available at https://github.com/PeterGriffinJin/METERN-submit.Comment: 9 pages, 11 appendix page

    Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets

    Full text link
    Recent experiments [J. Guo et al., Phys. Rev. Lett.124,206602 (2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu2_2(BO3_3)2_2 -- the Shastry-Sutherland material -- have provided strong evidence for a low-temperature phase transition between plaquette-singlet and antiferromagnetic order as a function of pressure. Further motivated by the recently discovered unusual first-order quantum phase transition with an apparent emergent O(4) symmetry of the antiferromagnetic and plaquette-singlet order parameters in a two-dimensional "checkerboard J-Q" quantum spin model [B. Zhao et al., Nat. Phys. 15, 678 (2019)], we here study the same model in the presence of weak inter-layer couplings. Our focus is on the evolution of the emergent symmetry as the system crosses over from two to three dimensions and the phase transition extends from strictly zero temperature in two dimensions up to finite temperature as expected in SrCu2_2(BO3_3)2_2. Using quantum Monte Carlo simulations, we map out the phase boundaries of the plaquette-singlet and antiferromagnetic phases, with particular focus on the triple point where these two order phases meet the paramagnetic phase for given strength of the inter-layer coupling. All transitions are first-order in the neighborhood of the triple points. We show that the emergent O(4) symmetry of the coexistence state breaks down clearly when the interlayer coupling becomes sufficiently large, but for a weak coupling, of the magnitude expected experimentally, the enlarged symmetry can still be observed at the triple point up to significant length scales. Thus, it is likely that the plaquette-singlet to antiferromagnetic transition in SrCu2_2(BO3_3)2_2 exhibits remnants of emergent O(4) symmetry, which should be observable due to additional weakly gapped Goldstone modes.Comment: 14 pages, 8 figure

    Quantum phases of SrCu2(BO3)2 from high-pressure thermodynamics

    Full text link
    We report heat capacity measurements of SrCu2_2(BO3_3)2_2 under high pressure along with simulations of relevant quantum spin models and map out the (P,T)(P,T) phase diagram of the material. We find a first-order quantum phase transition between the low-pressure quantum dimer paramagnet and a phase with signatures of a plaquette-singlet state below T = 22 K. At higher pressures, we observe a transition into a previously unknown antiferromagnetic state below 44 K. Our findings can be explained within the two-dimensional Shastry-Sutherland quantum spin model supplemented by weak inter-layer couplings. The possibility to tune SrCu2_2(BO3_3)2_2 between the plaquette-singlet and antiferromagnetic states opens opportunities for experimental tests of quantum field theories and lattice models involving fractionalized excitations, emergent symmetries, and gauge fluctuations.Comment: 6 pages + 8 pages supplemental informatio

    Weakly Supervised Multi-Label Classification of Full-Text Scientific Papers

    Full text link
    Instead of relying on human-annotated training samples to build a classifier, weakly supervised scientific paper classification aims to classify papers only using category descriptions (e.g., category names, category-indicative keywords). Existing studies on weakly supervised paper classification are less concerned with two challenges: (1) Papers should be classified into not only coarse-grained research topics but also fine-grained themes, and potentially into multiple themes, given a large and fine-grained label space; and (2) full text should be utilized to complement the paper title and abstract for classification. Moreover, instead of viewing the entire paper as a long linear sequence, one should exploit the structural information such as citation links across papers and the hierarchy of sections and paragraphs in each paper. To tackle these challenges, in this study, we propose FUTEX, a framework that uses the cross-paper network structure and the in-paper hierarchy structure to classify full-text scientific papers under weak supervision. A network-aware contrastive fine-tuning module and a hierarchy-aware aggregation module are designed to leverage the two types of structural signals, respectively. Experiments on two benchmark datasets demonstrate that FUTEX significantly outperforms competitive baselines and is on par with fully supervised classifiers that use 1,000 to 60,000 ground-truth training samples.Comment: 12 pages; Accepted to KDD 2023 (Code: https://github.com/yuzhimanhua/FUTEX

    Mechanical squeezing via fast continuous measurement

    Full text link
    We revisit quantum state preparation of an oscillator by continuous linear position measurement. Quite general analytical expressions are derived for the conditioned state of the oscillator. Remarkably, we predict that quantum squeezing is possible outside of both the backaction dominated and quantum coherent oscillation regimes, relaxing experimental requirements even compared to ground-state cooling. This provides a new way to generate non-classical states of macroscopic mechanical oscillators, and opens the door to quantum sensing and tests of quantum macroscopicity at room temperature
    corecore