7,915 research outputs found
Bowen Measure From Heteroclinic Points
We present a new construction of the entropy-maximizing, invariant
probability measure on a Smale space (the Bowen measure). Our construction is
based on points that are unstably equivalent to one given point, and stably
equivalent to another: heteroclinic points. The spirit of the construction is
similar to Bowen's construction from periodic points, though the techniques are
very different. We also prove results about the growth rate of certain sets of
heteroclinic points, and about the stable and unstable components of the Bowen
measure. The approach we take is to prove results through direct computation
for the case of a Shift of Finite type, and then use resolving factor maps to
extend the results to more general Smale spaces
Laser cooling and control of excitations in superfluid helium
Superfluidity is an emergent quantum phenomenon which arises due to strong
interactions between elementary excitations in liquid helium. These excitations
have been probed with great success using techniques such as neutron and light
scattering. However measurements to-date have been limited, quite generally, to
average properties of bulk superfluid or the driven response far out of thermal
equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of
superfluid excitations in real-time. Furthermore, strong light-matter
interactions allow both laser cooling and amplification of the thermal motion.
This provides a new tool to understand and control the microscopic behaviour of
superfluids, including phonon-phonon interactions, quantised vortices and
two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless
transition. The third sound modes studied here also offer a pathway towards
quantum optomechanics with thin superfluid films, including femtogram effective
masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex
interactions, and self-assembly into complex geometries with sub-nanometre
feature size.Comment: 6 pages, 4 figures. Supplementary information attache
Microphotonic Forces From Superfluid Flow
In cavity optomechanics, radiation pressure and photothermal forces are
widely utilized to cool and control micromechanical motion, with applications
ranging from precision sensing and quantum information to fundamental science.
Here, we realize an alternative approach to optical forcing based on superfluid
flow and evaporation in response to optical heating. We demonstrate optical
forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46
nN, roughly one order of magnitude larger than the radiation pressure force. We
use this force to feedback cool the motion of a microtoroid mechanical mode to
137 mK. The photoconvective forces demonstrated here provide a new tool for
high bandwidth control of mechanical motion in cryogenic conditions, and have
the potential to allow efficient transfer of electromagnetic energy to motional
kinetic energy.Comment: 5 pages, 6 figure
Subset currents on free groups
We introduce and study the space of \emph{subset currents} on the free group
. A subset current on is a positive -invariant locally finite
Borel measure on the space of all closed subsets of consisting of at least two points. While ordinary geodesic currents
generalize conjugacy classes of nontrivial group elements, a subset current is
a measure-theoretic generalization of the conjugacy class of a nontrivial
finitely generated subgroup in , and, more generally, in a word-hyperbolic
group. The concept of a subset current is related to the notion of an
"invariant random subgroup" with respect to some conjugacy-invariant
probability measure on the space of closed subgroups of a topological group. If
we fix a free basis of , a subset current may also be viewed as an
-invariant measure on a "branching" analog of the geodesic flow space for
, whose elements are infinite subtrees (rather than just geodesic lines)
of the Cayley graph of with respect to .Comment: updated version; to appear in Geometriae Dedicat
The Dust Content of Galaxy Clusters
We report on the detection of reddening toward z ~ 0.2 galaxy clusters. This
is measured by correlating the Sloan Digital Sky Survey cluster and quasar
catalogs and by comparing the photometric and spectroscopic properties of
quasars behind the clusters to those in the field. We find mean E(B-V) values
of a few times 10^-3 mag for sight lines passing ~Mpc from the clusters'
center. The reddening curve is typical of dust but cannot be used to
distinguish between different dust types. The radial dependence of the
extinction is shallow near the cluster center suggesting that most of the
detected dust lies at the outskirts of the clusters. Gravitational
magnification of background z ~ 1.7 sources seen on Mpc (projected) scales
around the clusters is found to be of order a few per cent, in qualitative
agreement with theoretical predictions. Contamination by different spectral
properties of the lensed quasar population is unlikely but cannot be excluded.Comment: 4 pages, 3 figure
Cavity Optomechanical Magnetometer
A cavity optomechanical magnetometer is demonstrated where the magnetic field
induced expansion of a magnetostrictive material is transduced onto the
physical structure of a highly compliant optical microresonator. The resulting
motion is read out optically with ultra-high sensitivity. Detecting the
magnetostrictive deformation of Terfenol-D with a toroidal whispering gallery
mode (TWGM) resonator a peak sensitivity of 400 nT/Hz^.5 was achieved with
theoretical modelling predicting that sensitivities of up to 500 fT/Hz^.5 may
be possible. This chip-based magnetometer combines high-sensitivity and large
dynamic range with small size and room temperature operation
Crystal truncation rods in kinematical and dynamical x-ray diffraction theories
Crystal truncation rods calculated in the kinematical approximation are shown
to quantitatively agree with the sum of the diffracted waves obtained in the
two-beam dynamical calculations for different reflections along the rod. The
choice and the number of these reflections are specified. The agreement extends
down to at least of the peak intensity. For lower intensities,
the accuracy of dynamical calculations is limited by truncation of the electron
density at a mathematically planar surface, arising from the Fourier series
expansion of the crystal polarizability
Dietary patterns and non-communicable disease risk in Indian adults : secondary analysis of Indian Migration Study data
Acknowledgements The authors thank the IMS study team members and ļ¬eld staff involved in the generation and processing of IMS data. Financial support: This study forms part of the Sustainable and Healthy Diets in India (SAHDI) project supported by the Wellcome Trust āOur Planet, Our Healthā programme (grant number 103932). The Wellcome Trust had no role in the design, analysis or writing of this article. The IMS was funded by Wellcome Trust (grant number GR070797MF). L.A.ās PhD studentship is funded by the Leverhulme Centre for Integrative Research on Agriculture and Health (LCIRAH).Peer reviewedPublisher PD
- ā¦