34 research outputs found

    Rate-dependent Ca2+ signalling underlying the force-frequency response in rat ventricular myocytes: A coupled electromechanical modeling study

    Get PDF
    Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here, we employ a deterministic mathematical model describing various Ca2+ signalling pathways under voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin (CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In particular, we study the frequency dependence of the peak force generated by the myofilaments, the force-frequency response (FFR). Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban (PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+ channel (ICa;L); and the enhancement in SERCA pump activity via phosphorylation of PLB.Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp studies both in the presence/absence of cAMP mediated -adrenergic stimulation. This study provides quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating the frequency-dependence of the trigger current (ICa;L) and RyR-release. It also highlights the relative role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here, we present a coupled electromechanical study emphasizing the rate-dependence of isometric force developed and also investigate the temperature-dependence of FFR. Our model provides mechanistic biophysically based explanations for the rate-dependence of CICR, generating useful and testable hypotheses. Although rat ventricular myocytes exhibit a positive peak FFR in the presence/absence of beta-adrenergic stimulation, they show a characteristic increase in the positive slope in FFR due to the presence of Norepinephrine or Isoproterenol. Our study identifies cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of ICa;L as the key mechanisms underlying the aforementioned positive FFR

    Kinetics of cardiac muscle contraction and relaxation are linked and determined by properties of the cardiac sarcomere

    No full text
    The regulation of myocardial contraction and relaxation kinetics is currently incompletely understood. When the amplitude of contraction is increased via the Frank-Starling mechanism, the kinetics of the contraction slow down, but when the amplitude of contraction is increased with either an increase in heart rate or via β-adrenergic stimulation, the kinetics speed up. It is also unknown how physiological mechanisms affect the kinetics of contraction versus those of relaxation. We investigated contraction-relaxation coupling in isolated trabeculae from the mouse and rat and stimulated them to contract at various temperatures, frequencies, preloads, and in the absence and presence of β-adrenergic stimulation. In each muscle at least 16 different conditions were assessed, and the correlation coefficient of the speed of contraction and relaxation was very close (generally >0.98). Moreover, in all but one of the analyzed murine strains, the ratio of the minimum rate of the derivative of force development (dF/dt) over maximum dF/dt was not significantly different. Only in trabeculae isolated from myosin-binding protein-C mutant mice was this ratio significantly lower (0.61 ± 0.07 vs. 0.84 ± 0.02 in 11 other strains of mice). Within each strain, this ratio was unaffected by modulation of length, frequency, or β-adrenergic stimulation. Rat trabeculae showed identical results; the balance between kinetics of contraction and relaxation was generally constant (0.85 ± 0.04). Because of the great variety in underlying excitation-contraction coupling in the assessed strains, we concluded that contraction-relation coupling is a property residing in the cardiac sarcomere

    Negotiating multisectoral evidence: a qualitative study of knowledge exchange at the intersection of transport and public health

    Get PDF
    Abstract Background For the prevention and control of chronic diseases, two strategies are frequently highlighted: that public health should be evidence based, and that it should develop a multisectoral approach. At the end of a natural experimental study of the health impacts of new transport infrastructure, we took the opportunity of a knowledge exchange forum to explore how stakeholders assessed, negotiated and intended to apply multisectoral evidence in policy and practice at the intersection of transport and health. We aimed to better understand the challenges they faced in knowledge exchange, as well as their everyday experiences with working in multisectoral remits. Methods In 2015, we conducted participant observation during an interactive event with 41 stakeholders from national and local government, the third sector and academia in Cambridge, UK. Formal and informal interactions between stakeholders were recorded in observational field notes. We also conducted 18 semistructured interviews reflecting on the event and on knowledge exchange in general. Results We found that stakeholders negotiated a variety of challenges. First, stakeholders had to negotiate relatively new formal and informal multisectoral remits; and how to reconcile the differing expectations of transport specialists, who tended to emphasise the importance of precedence in guiding action, and health specialists’ concern for the rigour and synthesis of research evidence. Second, research in this field involved complex study designs, and often produced evidence with uncertain transferability to other settings. Third, health outcomes of transport schemes had political traction and were used strategically but not easily translated into cost-benefit ratios. Finally, knowledge exchange meant multiple directions of influence. Stakeholders were concerned that researchers did not always have skills to translate their findings into understandable evidence, and some stakeholders would welcome opportunities to influence research agendas. Conclusions This case study of stakeholders’ experiences indicates that multisectoral research, practice and policymaking requires the ability and capacity to locate, understand and communicate complex evidence from a variety of disciplines, and integrate different types of evidence into clear business cases beyond sectoral boundaries

    The failing human heart is unable to use the Frank-Starling mechanism.

    No full text
    There is evidence that the failing human left ventricle in vivo subjected to additional preload is unable to use the Frank-Starling mechanism. The present study compared the force-tension relation in human nonfailing and terminally failing (heart transplants required because of dilated cardiomyopathy) myocardium. Isometric force of contraction of electrically driven left ventricular papillary muscle strips was studied under various preload conditions (2 to 20 mN). To investigate the influence of inotropic stimulation, the force-tension relation was studied in the presence of the cardiac glycoside ouabain. In skinned-fiber preparations of the left ventricle, developed tension was measured after stretching the preparations to 150% of the resting length. To evaluate the length-dependent activation of cardiac myofibrils by Ca2+ in failing and nonfailing myocardium, the tension-Ca2+ relations were also measured. After an increase of preload, the force of contraction gradually increased in nonfailing myocardium but was unchanged in failing myocardium. There were no differences in resting tension, muscle length, or cross-sectional area of the muscles between both groups. Pretreatment with ouabain (0.02 mumol/L) restored the force-tension relation in failing myocardium and preserved the force-tension relation in nonfailing tissue. In skinned-fiber preparations of the same hearts, developed tension increased significantly after stretching only in preparations from nonfailing but not from failing myocardium. The Ca2+ sensitivity of skinned fibers was significantly higher in failing myocardium (EC50, 1.0; 95% confidence limit, 0.88 to 1.21 mumol/L) compared with nonfailing myocardium (EC50, 1.7; 95% confidence limit, 1.55 to 1.86 mumol/L). After increasing the fiber length by stretching, a significant increase in the sensitivity of the myofibrils to Ca2+ was observed in nonfailing but not in failing myocardium. These experiments provide evidence for an impaired force-tension relation in failing human myocardium. On the subcellular level, this phenomenon might be explained by a failure of the myofibrils to increase the Ca2+ sensitivity after an increase of the sarcomere length
    corecore