54 research outputs found

    Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations

    Get PDF
    Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) 86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations

    Rare genetic variants explain missing heritability in smoking

    Get PDF
    Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this ‘missing heritability’. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability (hSNP2) was estimated from 0.13 to 0.28 (s.e., 0.10–0.13) in European ancestries, with 35–74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5–4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability (hped2, 0.18–0.34). In the African ancestry samples, hSNP2 was estimated from 0.03 to 0.33 (s.e., 0.09–0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking

    Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential

    Get PDF
    Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n = 109,122 individuals. We identified 59 sentinel variants (p < 5 × 10−9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the independent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an increased risk of cancer-related phenotypes

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity

    Get PDF
    Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol- increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels

    A novel rearrangement of the human β-like globin gene cluster

    No full text
    The first example of a duplication involving the human β-like globin genes has been characterised in DNA from a native of Vanuatu. Restriction endonuclease mapping has shown that a 5 kb insert of DNA in the γ-δ-β gene cluster is due to duplication of the Gγ-globin gene and results in a new rearrangement 5′-ε-Gγ-Gγ-Aγ-δ-β-3′

    Thalassaemia in Vanuatu, South-West Pacific: frequency and haematological phenotypes in young children

    No full text
    The archipelago of Vanuatu situated in the South-West Pacific has a high frequency of ?+ thalassaemia and additionally on some of the islands there is a high frequency of ? thalassaemia. As part of a large cohort study to investigate the clinical effect of thalassaemia on malaria on the islands of Espiritu Santo and Maewo in Vanuatu, the gene frequencies of the thalassaemias were determined and blood counts were performed on a cohort of infants from birth to 3 years. The haematological phenotypes of the different thalassaemic genotypes are compared, providing a detailed description of the clinical manifestations of ?+ thalassaemia during early development. In addition, crosssectional surveys of the population of the two islands were performed to establish the frequency of thalassaemia and other red cell polymorphisms and their geographical distribution.<br/

    HLA class-I and class-II allele frequencies and two-locus haplotypes in Melanesians of Vanuatu and New Caledonia

    No full text
    HLA class-I and class-II allele frequencies and two-locus haplotypes were examined in 367 unrelated Melanesians living on the islands of Vanuatu and New Caledonia. Diversity at all HLA class-I and class-II loci was relatively limited. In class-I loci, three HLA-A allelic groups (HLA-A*24, HLA-A*34 and HLA-A*11), seven HLA-B alleles or allelic groups (HLA-B*1506, HLA-B*5602, HLA-B*13, HLA-B*5601, HLA-B*4001, HLA-B*4002 and HLA-B*2704) and four HLA-C alleles or allelic groups (HLA-Cw*04, HLA-Cw*01, HLA-Cw*0702 and HLA-Cw*15) constituted more than 90% of the alleles observed. In the class-II loci, four HLA-DRB1 alleles (HLA-DRB1*15, HLA-DRB1*11, HLA-DRB1*04 and HLA-DRB1*16), three HLA-DRB3-5 alleles (HLA-DRB3*02, HLA-DRB4*01 and HLA-DRB5*01/02) and five HLA-DQB1 alleles (HLA-DQB1*0301, HLA-DQB1*04, HLA-DQB1*05, HLA-DQB1*0601 and HLA-DQB1*0602) constituted over 93, 97 and 98% of the alleles observed, respectively. Homozygosity showed significant departures from expected levels for neutrality based on allele frequency (i.e. excess diversity) at the HLA-B, HLA-Cw, HLA-DQB1 and HLA-DRB3/5 loci on some islands. The locus with the strongest departure from neutrality was HLA-DQB1, homozygosity being significantly lower than expected on all islands except New Caledonia. No consistent pattern was demonstrated for any HLA locus in relation to malaria endemicity
    • …
    corecore