19 research outputs found
Colza – La discipline reine des grandes cultures bio
La culture du colza est risquée mais intéressante: elle permet de réaliser une marge brute aussi élevée qu’avec du blé. Et la demande d’huile de colza pressée à froid est nettement supérieure à l’offre. Les temps sont donc favorables pour ceux qui – bien préparés – désirent s’attaquer à la «discipline reine» des grandes cultures biologiques.
Depuis 2005, la surface des cultures biologiques de colza a passé en Suisse de 5 à 150 hectares. Une histoire à succès qui continue: les coopératives Biofarm et PROGANA cherchent de nouveaux producteurs pour couvrir la demande durablement forte d’huile de colza biologique pressée à froid
Raps – die Königsdisziplin im Bioackerbau
Der Rapsanbau ist risikobehaftet, aber durchaus interessant: Es lässt sich ein ähnlich hoher Deckungsbeitrag erwirtschaften wie mit Weizen. Und die Nachfrage nach kalt gepresstem Biorapsöl übersteigt das Angebot deutlich. Gute Zeiten für Einsteigerinnen und Einsteiger die sich – gut vorbereitet – an die «Königsdisziplin» des Bioackerbaus wagen wollen.
Die Anbaufläche von Bioraps in der Schweiz konnte seit dem Jahr 2000 von 5 auf 150 Hektaren gesteigert werden. Eine Erfolgsgeschichte mit Fortsetzung: Die Biofarm Genossenschaft sucht weitere Produzenten, um die anhaltend grosse Nachfrage nach kalt gepresstem Biorapsöl zu decken
Attracting cavities for docking. Replacing the rough energy landscape of the protein by a smooth attracting landscape.
Molecular docking is a computational approach for predicting the most probable position of ligands in the binding sites of macromolecules and constitutes the cornerstone of structure-based computer-aided drug design. Here, we present a new algorithm called Attracting Cavities that allows molecular docking to be performed by simple energy minimizations only. The approach consists in transiently replacing the rough potential energy hypersurface of the protein by a smooth attracting potential driving the ligands into protein cavities. The actual protein energy landscape is reintroduced in a second step to refine the ligand position. The scoring function of Attracting Cavities is based on the CHARMM force field and the FACTS solvation model. The approach was tested on the 85 experimental ligand-protein structures included in the Astex diverse set and achieved a success rate of 80% in reproducing the experimental binding mode starting from a completely randomized ligand conformer. The algorithm thus compares favorably with current state-of-the-art docking programs
The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases
The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article
SwissSimilarity: A Web Tool for Low to Ultra High Throughput Ligand-Based Virtual Screening.
SwissSimilarity is a new web tool for rapid ligand-based virtual screening of small to unprecedented ultralarge libraries of small molecules. Screenable compounds include drugs, bioactive and commercial molecules, as well as 205 million of virtual compounds readily synthesizable from commercially available synthetic reagents. Predictions can be carried out on-the-fly using six different screening approaches, including 2D molecular fingerprints as well as superpositional and fast nonsuperpositional 3D similarity methodologies. SwissSimilarity is part of a large initiative of the SIB Swiss Institute of Bioinformatics to provide online tools for computer-aided drug design, such as SwissDock, SwissBioisostere or SwissTargetPrediction with which it can interoperate, and is linked to other well-established online tools and databases. User interface and backend have been designed for simplicity and ease of use, to provide proficient virtual screening capabilities to specialists and nonexperts in the field. SwissSimilarity is accessible free of charge or login at http://www.swisssimilarity.ch
Reaction mechanism and catalytic fingerprint of allantoin racemase
The stereospecific oxidative decomposition of urate into allantoin is the core of purine catabolism in many organisms. The spontaneous decomposition of upstream intermediates and the nonenzymatic racemization of allantoin lead to an accumulation of (R)-allantoin, because the enzymes converting allantoin into allantoate are specific for the (S) isomer. The enzyme allantoin racemase catalyzes the reversible conversion between the two allantoin enantiomers, thus ensuring the overall efficiency of the catabolic pathway and preventing allantoin accumulation. On the basis of recent crystallographic and biochemical evidence, allantoin racemase has been assigned to the family of cofactor-independent racemases, together with other amino acid racemases. A detailed computational investigation of allantoin racemase has been carried out to complement the available experimental data and to provide atomistic insight into the enzymatic action. Allantoin, the natural substrate of the enzyme, has been investigated at the quantum mechanical level, in order to rationalize its conformational and tautomeric equilibria, playing a key role in protein–ligand recognition and in the following catalytic steps. The reaction mechanism of the enzyme has been elucidated through quantum mechanics/molecular mechanics (QM/MM) calculations. The potential energy surface investigation, carried out at the QM/MM level, revealed a stepwise reaction mechanism. A pair of cysteine residues promotes the stereoinversion of a carbon atom of the ligand without the assistance of cofactors. Electrostatic fingerprint calculations are used to discuss the role of the active site residues in lowering the pKa of the substrate. The planar unprotonated intermediate is compared with the enolic allantoin tautomer observed in the active site of the crystallized enzyme. Finally, the enzymatic catalysis featured by allantoin racemase (AllR) is compared with that of other enzymes belonging to the same family