13 research outputs found
Modeling and optimization of tool wear and surface roughness in turning of austenitic stainless steel using response surface methodology
The wear of cutting tools remains a major obstacle. The effects of wear are not only antagonistic at the lifespan and productivity, but also harmful with the surface quality. The present work deals with some machinability studies on ?ank wear, surface roughness, and lifespan in ?nish turning of AISI304 stainless steel using multilayerTi(C,N)/Al2O3/TiN coated carbide inserts. The machining experiments are conducted based on the response surface methodology (RSM). Combined effects of three cutting parameters, namely cutting speed, feed rate and cutting time on the two performance outputs (i.e. VB and Ra), and combined effects of two cutting parameters, namely cutting speed and feed rate on lifespan (T), are explored employing the analysis of variance (ANOVA).The relationship between the variables and the technological parameters is determined using a quadratic regression model and optimal cutting conditions for each performance level are established. The results show that the flank wear is influenced principally by the cutting time and in the second level by the cutting speed. In addition, it is indicated that the cutting time is the dominant factor affecting workpiece surface roughness followed by feed rate, while lifespan is influenced by cutting speed
Global disparities in surgeonsâ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study
: The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSSŸ v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
5G network slicing with unmanned aerial vehicles: Taxonomy, survey, and future directions
Abstract With the everâexpanding rise of network demands and user expectations, the fifth generation (5G) of cellular networks was envisioned to support a plethora of use cases and conflicting user demands. Next to providing traditional connectivity like its previous generations, 5G also promises to be a heterogeneous network connecting humans, vehicles, unmanned aerial vehicles (UAVs), smart devices, and more. These challenging expectations proved to be overwhelming for traditional network infrastructures to handle. Network slicing has emerged as a promising solution that can achieve such diverse, taxing, and sometimes conflicting requirements in a dynamic and programmable way. There is no denying that UAVs have attained significant focus and research in recent years, and with 5G already being deployed, UAVs can now exploit the capabilities of the new networks. Extensive research is being taken to integrate UAVs into networks, assisting and improving aspects like latency, coverage, and capacity. Motivated by these facts, this survey distinguishes itself from other works by jointly exploring 5G, network slicing, and UAVs. The main contributions of this article are to showcase how UAVs can assist networks, provide a taxonomy of UAVs in the context of network slicing, and survey works that contribute to network slicing with UAVs. In this article, we present a comprehensive survey on UAVs in the context of network slicing, covering contributions, and stateâofâtheâart literature. We discuss network slicing inâdepth, focusing especially on the three major slices: enhanced Mobile BroadBand, massive machine type communications, and ultraâreliable lowâlatency communications. We provide an overview of 5G enablers, including softwareâdefined networking and network function virtualization. We cover UAVs and identify their roles in networks as both users and assistants. Furthermore, this survey provides insight into open issues and future research directions related to network slicing and UAVs before concluding
Antibiotic overuse in farming: Impact and risks (Review Article)
Although antibiotic therapy is important for animal health, for the preservation of livestock and the improvement of sanitary conditions, the unrestrained use of these molecules presents great risks to public health. The aim of our research is to highlight the use of antibiotics in poultry farming and its impact on the intestinal flora of chickens as well as on consumer health. The spread of the phenomenon of uncontrolled antibiotic use, the risks become complex and multiple and the danger is increasing and intensified. All previous studies indicate that the adverse effects of non-rational usage of antibiotics in poultry are widespread and multiple, but antibiotic resistance is the most disastrous problem among these effects. All parts of the public and animal health sector must therefore face this phenomenon in order to control it and avoid exacerbating its effects
Estimation and optimization of flank wear and tool lifespan in finish turning of AISI 304 stainless steel using desirability function approach
The wear of cutting tools remains a major obstacle. The effects of wear are not only antagonistic at the lifespan and productivity, but also harmful with the surface quality. The present work deals with some machinability studies on flank wear, surface roughness, and lifespan in ïŹnish turning of AISI 304 stainless steel using multilayer Ti(C,N)/Al2O3/TiN coated carbide inserts. The machining experiments are conducted based on the response surface methodology (RSM). Combined effects of three cutting parameters, namely cutting speed, feed rate and cutting time on the two performance outputs (i.e. VB and Ra), and combined effects of two cutting parameters, namely cutting speed and feed rate on lifespan (T), are explored employing the analysis of variance (ANOVA). The relationship between the variables and the technological parameters is determined using a quadratic regression model and optimal cutting conditions for each performance level are established through desirability function approach (DFA) optimization. The results show that the flank wear is influenced principally by the cutting time and in the second level by the cutting speed. In addition, it is indicated that the cutting time is the dominant factor affecting workpiece surface roughness followed by feed rate, while lifespan is influenced by cutting speed. The optimum level of input parameters for composite desirability was found Vc1-f1-t1 for VB, Ra and Vc1-f1 for T, with a maximum percentage of error 6.38%