8 research outputs found
Accurate and precise real-time RT-PCR assays for the identification of astrovirus associated encephalitis in cattle
A novel bovine astrovirus genotype species (BoAstV-CH13/NeuroS1) was recently identified in brain tissues of cattle as a plausible cause of encephalitis. The purpose of the present study was to develop and validate real time RT-PCR assays for the detection of BoAstV-CH13/NeuroS1 in brain tissues of cattle. Three different primer-probe combinations were designed based on BoAstV-CH13/NeuroS1 full-genome sequences of 11 different strains identified in cattle, and established in three distinct one-step real time RT-PCR protocols. These protocols were compared regarding their diagnostic performance using brain tissues of cattle with and without astrovirus associated encephalitis. The limit of detection (LOD) of all three assays was between 1.34 × 101 and 1.34 × 102 RNA copies, leading to an analytical sensitivity two orders of magnitude superior compared to a conventional pan-astrovirus RT-PCR protocol (LOD 1.31 × 104 RNA copies). Amplification efficiency was in the range of 97.3% to 107.5% with linearity (R2) > 0.99. The diagnostic sensitivity and specificity of the assays was determined as 100%, and all three revealed good intra- and inter-test repeatability. In conclusion, the newly developed RT-qPCRs are sensitive, specific, and reliable test formats that will facilitate BoAstV-CH13/NeuroS1 detection in routine diagnostics as well as in research settings
Accurate and precise real-time RT-PCR assays for the identification of astrovirus associated encephalitis in cattle
A novel bovine astrovirus genotype species (BoAstV-CH13/NeuroS1) was recently identified in brain tissues of cattle as a plausible cause of encephalitis. The purpose of the present study was to develop and validate real time RT-PCR assays for the detection of BoAstV-CH13/NeuroS1 in brain tissues of cattle. Three different primer-probe combinations were designed based on BoAstV-CH13/NeuroS1 full-genome sequences of 11 different strains identified in cattle, and established in three distinct one-step real time RT-PCR protocols. These protocols were compared regarding their diagnostic performance using brain tissues of cattle with and without astrovirus associated encephalitis. The limit of detection (LOD) of all three assays was between 1.34 × 101 and 1.34 × 102 RNA copies, leading to an analytical sensitivity two orders of magnitude superior compared to a conventional pan-astrovirus RT-PCR protocol (LOD 1.31 × 104 RNA copies). Amplification efficiency was in the range of 97.3% to 107.5% with linearity (R2) > 0.99. The diagnostic sensitivity and specificity of the assays was determined as 100%, and all three revealed good intra- and inter-test repeatability. In conclusion, the newly developed RT-qPCRs are sensitive, specific, and reliable test formats that will facilitate BoAstV-CH13/NeuroS1 detection in routine diagnostics as well as in research settings
Isolation of <it>Mycobacterium avium subspecies paratuberculosis</it> from Ugandan cattle and strain differentiation using optimised DNA typing techniques
Abstract Background The occurrence of paratuberculosis in Ugandan cattle has recently been reported but there is no information on the strains of Mycobacterium avium subspecies paratuberculosis (MAP) responsible for the disease. The aim of this study was to isolate and characterise MAP from seropositive cattle and paratuberculosis lesions in tissues obtained from slaughtered cattle in Uganda. Results Twenty one isolates of MAP were differentiated into 11 genotype profiles using seven genotyping loci consisting of Insertion Sequence 1311(IS1311), Mycobacterial interspersed repeat units (MIRU) (loci 2, 3), Variable number tandem repeats (VNTR) locus 32 and Short sequence repeats (SSR) (loci 1, 2 and 8). Three different IS1311 types and three MIRU 2 profiles (7, 9, 15 repeats) were observed. Two allelic variants were found based on MIRU 3 (1, 5 repeats), while VNTR 32 showed no polymorphism in any of the isolates from which it was successfully amplified. SSR Locus 1 revealed 6 and 7 G1 repeats among the isolates whereas SSR locus 2 revealed 10, 11 and 12 G2 repeats. SSR locus 8 was the most polymorphic locus. Phylogenetic analysis of SSR locus 8 sequences based on their single nucleotide polymorphisms separated the isolates into 8 genotypes. We found that the use of Ethylene glycol as a PCR additive improved the efficiency of the PCR reactions for MIRUs (2, 3), VNTR 32 and SSR (loci 1 and 2). Conclusions There is a high strain diversity of MAP in Uganda since 21 isolates could be classified into 11 genotypes. The combination of the seven loci used in this study results into a very precise discrimination of isolates. However analysis of SNPs on locus alone 8 is very close to this combination. Most of the genotypes in this study are novel since they differed in one or more loci from other isolates of cattle origin in different studies. The large number of MAP strains within a relatively small area of the country implies that the epidemiology of paratuberculosis in Uganda may be complicated and needs further investigation. Finally, the use of Ethylene glycol as a PCR additive increases the efficiency of PCR amplification of difficult templates.</p
Neurotropic astrovirus in cattle with nonsuppurative encephalitis in Europe
Encephalitis is a frequently diagnosed condition in cattle with neurological diseases. Many affected animals present with a nonsuppurative inflammatory reaction pattern in the brain. While this pattern supports a viral etiology, the causative pathogen remains unknown in a large proportion of cases. Using viral metagenomics, we identified an astrovirus (bovine astrovirus [BoAstV]-CH13) in the brain of a cow with nonsuppurative encephalitis. Additionally, BoAstV RNA was detected with reverse transcription-PCR and in situ hybridization in about one fourth (5/22 animals) of cattle with nonsuppurative encephalitis of unknown etiology. Viral RNA was found primarily in neurons and at the site of pathology. These findings support the notion that BoAstV infection is a common cause of encephalitis in cattle. Phylogenetically, BoAstV-CH13 was closely related to rare astrovirus isolates from encephalitis cases in animals and a human patient. Future research needs to be directed toward the pathogenic mechanisms, epidemiology, and potential cross-species transmission of these neurotropic astroviruses
Emergence of Equine West Nile Encephalitis in Central Macedonia, Greece, 2010.
During the summer of 2010, an outbreak of West Nile virus (WNV) infections attributed to a lineage 2 WNV strain was reported among humans and horses in Central Macedonia, Northern Greece. Here, the clinical and laboratory investigation of horses that showed severe neurological signs due to WNV infection is being described. Specifically, between August and September 2010, 17 horses with neurological signs were detected. WNV infection was confirmed in all 17 clinical cases by applying laboratory testing. The duration of WNV-specific IgM antibodies in sera obtained from seven of the clinically affected horses was relatively short (10-60Â days; mean 44Â days). In the regional unit of Thessaloniki, (i) seroprevalence of WNV and fatality rate in horses were high (33% and 30%, respectively), and (ii) the ratio of neurological manifestations-to-infections for this virus strain was high (19%). These observations indicate that the strain responsible for the massive human epidemic of 2010 in Greece was also highly pathogenic for horses. This is the first time that WNV infection has been documented in horses with clinical manifestations in Greece. WNV infection should be included in the differential diagnosis of horses with encephalitis in Greece
Full-genome based molecular characterization of encephalitis-associated bovine astroviruses
Novel types of astrovirus have been identified recently in association with neurological disease in cattle. Among those viruses is bovine astrovirus CH13 (BoAstV CH13) that has been identified in Switzerland in a cow with encephalitis. Molecular testing by a combination of reverse transcription (RT-) PCR and in situ hybridization (ISH) indicated that astrovirus infection accounts for around one quarter of viral encephalitis cases of unknown etiology in cattle. Yet, it remained to be explored whether these animals were infected by BoAstV CH13 or other astrovirus species. In the present study we sequenced the entire astrovirus genome in brain tissues of eight RT-PCR and/or ISH positive cattle. Phylogenetic comparison of the genomic RNA and the encoded non-structural and structural proteins revealed that all these astrovirus strains were very similar to BoAstV CH13 as well as to a bovine encephalitis strain reported from the USA (BoAstV NeuroS1), and clearly distinct from other previously reported astroviruses. Conserved 5' and 3' untranslated regions (UTRs) were predicted to display distinct secondary RNA structures, which likely play a role in viral RNA replication and/or protein translation. Based on these data we propose that BoAstV CH13/NeuroS1 represents a new genotype species within the genus Mammastrovirus. The high degree of similarity between the strains and their relative distance to other genotype species suggest that during evolution some astroviruses acquired factors that specifically contribute to neuroinvasion
Distinct Proteinase K-Resistant Prion Protein Fragment in Goats with No Signs of Disease in a Classical Scrapie Outbreakâ–żâ€
Considerable efforts have been directed toward the identification of small-ruminant prion diseases, i.e., classical and atypical scrapie as well as bovine spongiform encephalopathy (BSE). Here we report the in-depth molecular analysis of the proteinase K-resistant prion protein core fragment (PrPres) in a highly scrapie-affected goat flock in Greece. The PrPres profile by Western immunoblotting in most animals was that of classical scrapie in sheep. However, in a series of clinically healthy goats we identified a unique C- and N-terminally truncated PrPres fragment, which is akin but not identical to that observed for atypical scrapie. These findings reveal novel aspects of the nature and diversity of the molecular PrPres phenotypes in goats and suggest that these animals display a previously unrecognized prion protein disorder