26 research outputs found
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Immunocompromised patients with acute respiratory distress syndrome: Secondary analysis of the LUNG SAFE database
Background: The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p < 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p < 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013
Infections, antibiotic treatment and mortality in patients admitted to ICUs in countries considered to have high levels of antibiotic resistance compared to those with low levels
Background: Antimicrobial resistance is an increasing concern in ICUs worldwide. Infection with an antibiotic resistant (ABR) strain of an organism is associated with greater mortality than infection with the non-resistant strain, but there are few data assessing whether being admitted to an intensive care unit (ICU) with high levels of antimicrobial resistance is associated with a worse outcome than being admitted to an ICU with low rates of resistance. The aim of this study was, therefore, to compare the characteristics of infections and antibiotic treatments and patient outcomes in patients admitted to ICUs in countries considered as having high levels of antibiotic resistance and those admitted to ICUs in countries considered as having low levels of antibiotic resistance.Methods: Data from the large, international EPIC II one-day point prevalence study on infections in patients hospitalized in ICUs were used. For the current study, we compared the data obtained from patients from two groups of countries: countries with reported MRSA rates of ≥ 25% (highABR: Greece, Israel, Italy, Malta, Portugal, Spain, and Turkey) and countries with MRSA rates of < 5% (lowABR: Denmark, Finland, Netherlands, Norway, and Sweden).Results: On the study day, 1187/2204 (53.9%) patients in the HighABR ICUs were infected and 255/558 (45.7%) in the LowABR ICUs (P < 0.01). Patients in the HighABR ICUs were more severely ill than those in the LowABR ICUs, as reflected by a higher SAPS II score (35.6 vs 32.7, P < 0.05) and had longer median ICU (12 days vs 5 days) and hospital (24 days vs 16 days) lengths of stay. They also had higher crude ICU (20.0% vs 15.4%) and hospital (27.0% vs 21.5%) mortality rates (both P < 0.05). However, after multivariable adjustment and matched pair analysis there were no differences in ICU or hospital mortality rates between High or LowABR ICU patients overall or among those with infections.Conclusions: Being hospitalized in an ICU in a region with high levels of antimicrobial resistance is not associated per se with a worse outcome. © 2014 Hanberger et al.; licensee BioMed Central Ltd
Infections, antibiotic treatment and mortality in patients admitted to ICUs in countries considered to have high levels of antibiotic resistance compared to those with low levels
Background: Antimicrobial resistance is an increasing concern in ICUs worldwide. Infection with an antibiotic resistant (ABR) strain of an organism is associated with greater mortality than infection with the non-resistant strain, but there are few data assessing whether being admitted to an intensive care unit (ICU) with high levels of antimicrobial resistance is associated with a worse outcome than being admitted to an ICU with low rates of resistance. The aim of this study was, therefore, to compare the characteristics of infections and antibiotic treatments and patient outcomes in patients admitted to ICUs in countries considered as having high levels of antibiotic resistance and those admitted to ICUs in countries considered as having low levels of antibiotic resistance. Methods: Data from the large, international EPIC II one-day point prevalence study on infections in patients hospitalized in ICUs were used. For the current study, we compared the data obtained from patients from two groups of countries: countries with reported MRSA rates of greater than= 25% (highABR: Greece, Israel, Italy, Malta, Portugal, Spain, and Turkey) and countries with MRSA rates of less than 5% (lowABR: Denmark, Finland, Netherlands, Norway, and Sweden). Results: On the study day, 1187/2204 (53.9%) patients in the HighABR ICUs were infected and 255/558 (45.7%) in the LowABR ICUs (P less than 0.01). Patients in the HighABR ICUs were more severely ill than those in the LowABR ICUs, as reflected by a higher SAPS II score (35.6 vs 32.7, P less than 0.05) and had longer median ICU (12 days vs 5 days) and hospital (24 days vs 16 days) lengths of stay. They also had higher crude ICU (20.0% vs 15.4%) and hospital (27.0% vs 21.5%) mortality rates (both P less than 0.05). However, after multivariable adjustment and matched pair analysis there were no differences in ICU or hospital mortality rates between High or LowABR ICU patients overall or among those with infections. Conclusions: Being hospitalized in an ICU in a region with high levels of antimicrobial resistance is not associated per se with a worse outcome
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome: Insights from the LUNG SAFE study
Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT0201007