104 research outputs found
Hepatitis C Virus (HCV) Genotype 1 Subtype Identification in New HCV Drug Development and Future Clinical Practice
International audienceBACKGROUND: With the development of new specific inhibitors of hepatitis C virus (HCV) enzymes and functions that may yield different antiviral responses and resistance profiles according to the HCV subtype, correct HCV genotype 1 subtype identification is mandatory in clinical trials for stratification and interpretation purposes and will likely become necessary in future clinical practice. The goal of this study was to identify the appropriate molecular tool(s) for accurate HCV genotype 1 subtype determination. METHODOLOGY/PRINCIPAL FINDINGS: A large cohort of 500 treatment-naĂŻve patients eligible for HCV drug trials and infected with either subtype 1a or 1b was studied. Methods based on the sole analysis of the 5' non-coding region (5'NCR) by sequence analysis or reverse hybridization failed to correctly identify HCV subtype 1a in 22.8%-29.5% of cases, and HCV subtype 1b in 9.5%-8.7% of cases. Natural polymorphisms at positions 107, 204 and/or 243 were responsible for mis-subtyping with these methods. A real-time PCR method using genotype- and subtype-specific primers and probes located in both the 5'NCR and the NS5B-coding region failed to correctly identify HCV genotype 1 subtype in approximately 10% of cases. The second-generation line probe assay, a reverse hybridization assay that uses probes targeting both the 5'NCR and core-coding region, correctly identified HCV subtypes 1a and 1b in more than 99% of cases. CONCLUSIONS/SIGNIFICANCE: In the context of new HCV drug development, HCV genotyping methods based on the exclusive analysis of the 5'NCR should be avoided. The second-generation line probe assay is currently the best commercial assay for determination of HCV genotype 1 subtypes 1a and 1b in clinical trials and practice
HIV-1/M+O INTERGROUP DUAL INFECTIONS AND ASSOCIATED HIV-MO RECOMBINANTS IN FRANCE FROM 2004 TO 2014
International audienc
Multicenter clinical comparative evaluation of Alinity m HIV-1 assay performance.
Abstract Background Accurate, rapid detection of HIV-1 RNA is critical for early diagnosis, treatment decision making, and long-term management of HIV-1 infection. Objective We evaluated the diagnostic performance of the Alinity m HIV-1 assay, which uses a dual target/dual probe design against highly conserved target regions of the HIV-1 genome and is run on the fully automated Alinity m platform. Study design This was an international, multisite study that compared the diagnostic performance of the Alinity m HIV-1 assay to four commercially available HIV-1 assays routinely used in nine independent clinical laboratories. Alinity m HIV-1 assay precision, detectability, and reproducibility was compared across four study sites. Results The Alinity m HIV-1 assay produced comparable results to currently available HIV-1 assays (correlation coefficient >0.995), with an overall bias of -0.1 to 0.10 Log10 copies/mL. The Alinity m HIV-1 assay and its predecessor m2000 HIV-1 assay demonstrated comparable detection of 16 different HIV-1 subtypes (R2 = 0.956). A high level of agreement (>88 %) between all HIV-1 assays was seen near clinical decision points of 1.7 Log10 copies/mL (50 copies/mL) and 2.0 Log10 copies/mL (200 copies/mL). Alinity m HIV-1 assay precision was 0.08 and 0.21 Log10 copies/mL at VLs of 1000 and 50 copies/mL, respectively, with a high level of detectability (≥97 % hit rate) and reproducibility across sites. Conclusions The Alinity m HIV-1 assay provides comparable diagnostic accuracy to current HIV-1 assays, and when run on the Alinity m system, has the capacity to shorten the time between diagnosis and treatment
A Higher Correlation of HCV Core Antigen with CD4+ T Cell Counts Compared with HCV RNA in HCV/HIV-1 Coinfected Patients
Development of HCV infection is typically followed by chronic hepatitis C (CHC) in most patients, while spontaneous HCV viral clearance (SVC) occurs in only a minority of subjects. Compared with the widespread application of HCV RNA testing by quantitative RT-PCR technique, HCV core antigen detection may be an alternative indicator in the diagnosis of hepatitis C virus infections and in monitoring the status of infectious individuals. However, the correlation and differences between these two indicators in HCV infection need more investigation, especially in patients coinfected by HIV-1. In this study, a total of 354 anti-HCV and/or anti-HIV serum positive residents from a village of central China were enrolled. Besides HCV-related hepatopathic variables including clinical status, ALT, AST, anti-HCV Abs, as well as the altered CD4+/CD8+ T cell counts, HCV core antigen and HCV viral load were also measured. The concentration of serum HCV core antigen was highly correlated with level of HCV RNA in CHC patients with or without HIV-1 coinfection. Of note, HCV core antigen concentration was negatively correlated with CD4+ T cell count, while no correlation was found between HCV RNA level and CD4+ T cell count. Our findings suggested that quantitative detection of plasma HCV core antigen may be an alternative indicator of HCV RNA qPCR assay when evaluating the association between HCV replication and host immune status in HCV/HIV-1 coinfected patients
Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma
Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe
Performance of the Abbott Real-Time PCR Assay Using m2000sp and m2000rt for Hepatitis C Virus RNA Quantificationâ–ż
Quantification of hepatitis C virus (HCV) RNA is essential for the everyday management of chronic hepatitis C therapy. “Real-time” PCR techniques are potentially more sensitive than classical PCR techniques, are not prone to carryover contamination, and have a consistently wider dynamic range of quantification. Thus, they are rapidly replacing other technologies for routine quantification of HCV RNA. We extensively evaluated the intrinsic characteristics and clinical performance of the m2000sp-m2000rt Abbott real-time PCR platform for HCV RNA quantification. The study shows that the m2000sp-m2000rt platform is sensitive, specific, and precise; that the results are reproducible; and that the platform has a broad dynamic range of quantification. When comparing HCV RNA levels measured in the same individuals with the m2000sp-m2000rt platform and the third-generation branched-DNA assay, a trend toward a modest overestimation of HCV RNA levels was observed in the m2000sp-m2000rt platform in all genotypes except genotype 5. The differences, however, were unlikely to have any impact in clinical practice. In conclusion, our study shows that the Abbott m2000 real-time PCR system for HCV RNA quantification is sensitive, specific, and precise; that the results are reproducible; and that the platform's broad dynamic range of quantification is well suited to HCV RNA monitoring in the clinical setting
Performance of the Cobas AmpliPrep/Cobas TaqMan Real-Time PCR Assay for Hepatitis B Virus DNA Quantificationâ–ż
Hepatitis B virus (HBV) DNA quantification is used to establish the prognosis of chronic HBV-related liver disease, to identify those patients who need to be treated, and to monitor the virologic response and resistance to antiviral therapies. Real-time PCR-based assays are gradually replacing other technologies for routine quantification of HBV DNA in clinical practice. The goal of this study was to evaluate the intrinsic characteristics and clinical performance of the real-time PCR Cobas AmpliPrep/Cobas TaqMan (CAP/CTM) platform for HBV DNA quantification. Specificity was satisfactory (95% confidence interval, 98.1 to 100%). Intra-assay coefficients of variation ranged from 0.22% to 2.68%, and interassay coefficients of variation ranged from 1.31% to 4.13%. Quantification was linear over the full dynamic range of quantification of the assay (1.7 to 8.0 log10 IU/ml) and was not affected by dilution. The assay was accurate regardless of the HBV genotype. Samples containing HBV DNA levels above 4.5 log10 IU/ml were slightly underestimated relative to another accurate assay based on branched-DNA technology, but this is unlikely to have noteworthy clinical implications. Thus, the CAP/CTM HBV DNA assay is sensitive, specific, and reproducible, and it accurately quantifies HBV DNA levels in patients chronically infected by HBV genotypes A to F. Samples with HBV DNA concentrations above the upper limit of quantification need to be diluted and then retested. Broad use of fully automated real-time PCR assays should improve the management of patients with chronic HBV infection
- …