114 research outputs found

    The United Kingdom Ministry of Defence – the Case for Followership as a key Element of Leadership Development

    Get PDF
    Published in Strategic Management Quarterly (2015) Vol 3 Issue 4Using the Kelley (1992) Followership Style instrument this study explores the role and perceptions of Followership within the UK Ministry of Defence. In particular, within the Armed Services and the Civil Service it was apparent from the literature that only the RAF formally recognised the role of Followership within their Leadership staff development programmes, hence the research aimed to see whether this was reflected in self-perceptions of Followership Style and the extent to which it is applied within the organisation. The analysis concluded that the analysed sample (298 responses) produced an atypical profile compared to other studies that have used the instrument. The RAF showed statistically significant higher scores than the other Armed Services or the Civil Servants and scores increased with Rank/Grade. The analysis also highlighted that the individuals seemed not to be recognised as good Followers by their leaders, they appeared not to recognise their reports as good Followers and in all cases the organisation seemed not to recognise their value. These aspects provide scope for further research to better understand the organisational culture, processes and practices that appear to act as a barrier to the extraction of the benefits of having good Followers even in an area where Star Followers dominate

    Using Bayesian Networks to forecast spares demand from equipment failures in a changing service logistics context,

    Get PDF
    A problem faced by some Logistic Support Organisations (LSOs) is that of forecasting the demand for spare parts, corresponding to equipment failures within the system. Here we are particularly concerned with a final phase of operations and the opportunity to place only a single order to cover demand during this phase. The problem is further complicated when the service logistics context can change during this final phase, e.g. as the number of systems supported or the LSO's resources change. Such a problem is typical of the final phase of many military operations. The LSO operates the recovery and repair loop for the equipment in question. By developing a simulation of the LSO, we can generate synthetic operational data regarding equipment breakdowns, etc. We then split that data into a training set and a test set in order to compare several approaches to forecasting demand in the final operational phase. We are particularly interested in the application of Bayesian network models for this type of forecasting since these offer a way of combining hard observational data with subjective expert opinion. Different LSO configurations were simulated to create a test dataset and the simulation results were compared with the various forecasts. The BN that learned from training data performed best, followed by a hybrid BN design combining expert elicitation and machine learning, and then a logistic regression model. An expert-adjusted exponential smoothing model was the poorest performer and these differences were statistically significant. The paper concludes with a discussion of the results, some implications for practice and suggestions for future work

    Investigating the applicability of Bayesian networks to demand forecasting during the final phase of support operations

    Get PDF
    A challenge faced by businesses that provide logistical support to systems is when the provision of those support services is no longer required. A typical example of such a situation is when military operations come to an end. In such cases, those companies that have a contract with the Armed Forces to provide maintenance support for the deployed systems, need to maintain those systems at minimum cost during that final phase, that is from the time the decision to stop the operations is announced until their very end. During the final phase, a challenging problem is forecasting the demand for spare parts, corresponding to equipment failures within the system. This is because the support context, the number of supported systems, the support equipment or even the operational demand can change during that period, and also because there can be very limited opportunities to place orders to cover demand. This thesis suggests that these types of problems can take advantage of the data that have been collected during the support operations prior to the initiation of the closing down process. Moreover, the thesis investigates the exploitation of these data by the use of Bayesian Networks to forecast the demand for spares that will be required for the provision of maintenance during the final phase. The research uses stochastically simulated Support Chain scenarios to generate data and also to evaluate different methods of constructing Bayesian Networks. The simulated scenarios differ in the demand context as well as in the complexity of the Equipment Breakdown Structure of the supported systems. The Bayesian Networks’ structure development methods that are tested include unsupervised machine learning, eliciting the structure from Subject Matter Experts, and two hybrid approaches that combine expert elicitation and machine learning. These models are compared to respective logistic regression models, as well as subject matter experts-adjusted single exponential smoothing forecasts. The comparison of the models is made using both accuracy metrics and accuracy implication metrics. These forecast models’ comparison methods are analysed in order to evaluate their appropriateness. The analyses have provided a number of novel outputs. The algebraic analysis of the accuracy metrics theoretically proves empirical problems that have been discussed in the literature but also reveals others. Regarding the accuracy implication metrics, the analysis shows that for the particular type of problems examined in this thesis –final phase problems – the accuracy implication metrics commonly applied are not enough to inform decision making, and a number of additional ones are required.The research shows that for the scenarios examined, the Bayesian Networks that had their structure learned using an unsupervised algorithm performed better in the accuracy metric than any of the other models. However, even though these Bayesian Networks also did well with the accuracy implication metrics, neither they, nor any of the others was consistently dominant. The reason for the discrepancy in the results between the accuracy and the accuracy implication metrics is that the latter are not only driven by how accurate the forecast model’s prediction is, but also by the model of the residual error and the bias
    corecore