1,283 research outputs found
A convenient synthesis of pyrandione derivatives using P-toluenesulfonic acid as catalyst under ultrasound irradiation
A new series of 3,3'-{alkane-α,ω-diylbis[imino-eth-1-yl-1-ylidene]}bis(6-methyl-2H-pyran-2,4(3H)-dione) derivatives (3c-e) has been synthesized by the convenient ultrasound-mediated condensation of a diamine with dehydroacetic acid in the presence of a catalytic amount of p-toluenesulfonic acid. The structure of all synthesized compounds was elucidated by IR spectroscopy, 1H NMR spectroscopic spectra, elemental analysis, and mass spectroscopy. A tautomeric form for the derivatives species is also proposed.Keywords: Dehydroacetic acid; Schiff base; Condensation; Catalyst; Ultrasound irradiation; Tautomeris
Towards resolution of the scalar meson nonet enigma
By the application of a linear mass spectrum to a composite system of both
the pseudoscalar and scalar meson nonets, we find three mass relations for the
masses of the scalar states which suggest the assignment for the
scalar meson nonet: Comment: 16 pages, LaTe
New Glueball-Meson Mass Relations
Using the ``glueball dominance'' picture of the mixing between q\bar{q}
mesons of different hidden flavors, we establish new glueball-meson mass
relations which serve as a basis for glueball spectral systematics. For the
tensor glueball mass 2.3\pm 0.1 GeV used as an input parameter, these relations
predict the following glueball masses: M(0^{++})\simeq 1.65\pm 0.05 GeV,
M(1^{--})\simeq 3.2\pm 0.2 GeV, M(2^{-+})\simeq 2.95\pm 0.15 GeV,
M(3^{--})\simeq 2.8\pm 0.15 GeV. We briefly discuss the failure of such
relations for the pseudoscalar sector. Our results are consistent with
(quasi)-linear Regge trajectories for glueballs with slope \simeq 0.3\pm 0.1
GeV^{-2}.Comment: Extensive revision including response to comments received, value of
glueball Regge slope, and a consideration of radial excitations. 14 pages,
LaTe
Higgs Decay to Order \alpha_s^4
We present in analytic form the three-loop O(\alpha_s^2) correction to the H
-> gg partial width of the standard-model Higgs boson with intermediate mass
M_H << 2 M_t. Its knowledge is required because the O(\alpha_s) correction is
so sizeable that the theoretical prediction to this order is unlikely to be
reliable. For M_H=100 GeV, the resulting QCD correction factor reads
. The new three-loop correction increases the Higgs-boson hadronic
width by an amount of order 1%.Comment: Latex, 7 pages, 1 ps-figur
Measurement of the hadronic photon structure function F_{2}^{γ} at LEP2
The hadronic structure function of the photon F_{2}^{γ} (x, Q²) is measured as a function of Bjorken x and of the photon virtuality Q² using deep-inelastic scattering data taken by the OPAL detector at LEP at e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F_{2}^{γ} are extended to an average Q² of 〈Q²〉=780 GeV² using data in the kinematic range 0.15<x<0.98. The Q² evolution of F_{2}^{γ} is studied for 12.1<〈Q²〉<780 GeV² using three ranges of x. As predicted by QCD, the data show positive scaling violations in F_{2}^{γ} with F_{2}^{γ} (Q²)/α = (0.08±0.02⁺⁰·⁰⁵_₀.₀₃) + (0.13±0.01⁺⁰·⁰¹_₀.₀₁) lnQ², where Q² is in GeV², for the central x region 0.10–0.60. Several parameterisations of F_{2}^{γ} are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data
Measurement of the charm structure function F_{2,c)^{γ} of the photon at LEP
The production of charm quarks is studied in deep-inelastic electron–photon scattering using data recorded by the OPAL detector at LEP at nominal e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D⁰π with the D⁰ observed in two decay modes with charged particle final states, Kπ and Kπππ. The cross-section σ^{D*} for production of charged D* in the reaction e⁺e⁻→e⁺e⁻D*Χ is measured in a restricted kinematical region using two bins in Bjorken x, 0.00140.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x<0.1 the measured cross-section is 43.8±14.3±6.3±2.8 pb with a next-to-leading order prediction of 17.0⁺²·⁹_₂.₃ pb
Spin Structure of the Proton from Polarized Inclusive Deep-Inelastic Muon-Proton Scattering
We have measured the spin-dependent structure function in inclusive
deep-inelastic scattering of polarized muons off polarized protons, in the
kinematic range and . A
next-to-leading order QCD analysis is used to evolve the measured
to a fixed . The first moment of at is .
This result is below the prediction of the Ellis-Jaffe sum rule by more than
two standard deviations. The singlet axial charge is found to be . In the Adler-Bardeen factorization scheme, is
required to bring in agreement with the Quark-Parton Model. A
combined analysis of all available proton and deuteron data confirms the
Bjorken sum rule.Comment: 33 pages, 22 figures, uses ReVTex and smc.sty. submitted to Physical
Review
Large enhancement of deuteron polarization with frequency modulated microwaves
We report a large enhancement of 1.7 in deuteron polarization up to values of
0.6 due to frequency modulation of the polarizing microwaves in a two liters
polarized target using the method of dynamic nuclear polarization. This target
was used during a deep inelastic polarized muon-deuteron scattering experiment
at CERN. Measurements of the electron paramagnetic resonance absorption spectra
show that frequency modulation gives rise to additional microwave absorption in
the spectral wings. Although these results are not understood theoretically,
they may provide a useful testing ground for the deeper understanding of
dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar
files in poltar.uu, which also brings cernart.sty and crna12.sty files neede
Measurement of triple gauge boson couplings from W⁺W⁻ production at LEP energies up to 189 GeV
A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb⁻¹. After combining with our previous measurements at centre-of-mass energies of 161–183 GeV we obtain κ = 0.97_{-0.16}^{+0.20}, g_{1}^{z} = 0.991_{-0.057}^{+0.060} and λ = -0.110_{-0.055}^{+0.058}, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their Standard Model values. These results are consistent with the Standard Model expectations
Search for Yukawa Production of a Light Neutral Higgs Boson at LEP
Within a Two-Higgs-Doublet Model (2HDM) a search for a light Higgs boson in
the mass range of 4-12 GeV has been performed in the Yukawa process e+e- -> b
bbar A/h -> b bbar tau+tau-, using the data collected by the OPAL detector at
LEP between 1992 and 1995 in e+e- collisions at about 91 GeV centre-of-mass
energy. A likelihood selection is applied to separate background and signal.
The number of observed events is in good agreement with the expected
background. Within a CP-conserving 2HDM type II model the cross-section for
Yukawa production depends on xiAd = |tan beta| and xihd = |sin alpha/cos beta|
for the production of the CP-odd A and the CP-even h, respectively, where tan
beta is the ratio of the vacuum expectation values of the Higgs doublets and
alpha is the mixing angle between the neutral CP-even Higgs bosons. From our
data 95% C.L. upper limits are derived for xiAd within the range of 8.5 to 13.6
and for xihd between 8.2 to 13.7, depending on the mass of the Higgs boson,
assuming a branching fraction into tau+tau- of 100%. An interpretation of the
limits within a 2HDM type II model with Standard Model particle content is
given. These results impose constraints on several models that have been
proposed to explain the recent BNL measurement of the muon anomalous magnetic
moment.Comment: 24 pages, 9 figures, Submitted to Euro. Phys. J.
- …