1,019 research outputs found

    The nonlinear evolution of de Sitter space instabilities

    Full text link
    We investigate the quantum evolution of large black holes that nucleate spontaneously in de Sitter space. By numerical computation in the s-wave and one-loop approximations, we verify claims that such black holes can initially "anti-evaporate" instead of shrink. We show, however, that this is a transitory effect. It is followed by an evaporating phase, which we are able to trace until the black holes are small enough to be treated as Schwarzschild. Under generic perturbations, the nucleated geometry is shown to decay into a ring of de Sitter regions connected by evaporating black holes. This confirms that de Sitter space is globally unstable and fragments into disconnected daughter universes.Comment: 10 pages, 8 figures, to appear in PR

    A covariant entropy bound conjecture on the dynamical horizon

    Full text link
    As a compelling pattern for the holographic principle, our covariant entropy bound conjecture is proposed for more general dynamical horizons. Then we apply our conjecture to Λ\LambdaCDM cosmological models, where we find it imposes a novel upper bound 109010^{-90} on the cosmological constant for our own universe by taking into account the dominant entropy contribution from super-massive black holes, which thus provides an alternative macroscopic perspective to understand the longstanding cosmological constant problem. As an intriguing implication of this conjecture, we also discuss the possible profound relation between the present cosmological constant, the origin of mass, and the anthropic principle.Comment: JHEP style, 9 pages, 1 figure, honorable mention award received from Gravity Research Foundation for 2008 Essay Competitio

    The Holographic Principle for General Backgrounds

    Get PDF
    We aim to establish the holographic principle as a universal law, rather than a property only of static systems and special space-times. Our covariant formalism yields an upper bound on entropy which applies to both open and closed surfaces, independently of shape or location. It reduces to the Bekenstein bound whenever the latter is expected to hold, but complements it with novel bounds when gravity dominates. In particular, it remains valid in closed FRW cosmologies and in the interior of black holes. We give an explicit construction for obtaining holographic screens in arbitrary space-times (which need not have a boundary). This may aid the search for non-perturbative definitions of quantum gravity in space-times other than AdS.Comment: 15 pages, 4 figures. Based on a talk given at Strings '99. Includes a reply to recent criticism. For more details, examples, and references, see hep-th/9905177 and hep-th/990602

    Quantum Global Structure of de Sitter Space

    Get PDF
    I study the global structure of de Sitter space in the semi-classical and one-loop approximations to quantum gravity. The creation and evaporation of neutral black holes causes the fragmentation of de Sitter space into disconnected daughter universes. If the black holes are stabilized by a charge, I find that the decay leads to a necklace of de Sitter universes (`beads') joined by near-extremal black hole throats. For sufficient charge, more and more beads keep forming on the necklace, so that an unbounded number of universes will be produced. In any case, future infinity will not be connected. This may have implications for a holographic description of quantum gravity in de Sitter space.Comment: 37 pages, LaTeX2e, 10 figures. v2: references adde

    Light Sheets and the Covariant Entropy Conjecture

    Get PDF
    We examine the holography bound suggested by Bousso in his covariant entropy conjecture, and argue that it is violated because his notion of light sheet is too generous. We suggest its replacement by a weaker bound.Comment: 5 pages, to appear in Classical and Quantum Gravit

    Unified approach to study quantum properties of primordial black holes, wormholes and of quantum cosmology

    Full text link
    We review the anomaly induced effective action for dilaton coupled spinors and scalars in large N and s-wave approximation. It may be applied to study the following fundamental problems: construction of quantum corrected black holes (BHs), inducing of primordial wormholes in the early Universe (this effect is confirmed) and the solution of initial singularity problem. The recently discovered anti-evaporation of multiple horizon BHs is discussed. The existance of such primordial BHs may be interpreted as SUSY manifestation. Quantum corrections to BHs thermodynamics maybe also discussed within such scheme.Comment: LaTeX file and two eps files, to appear in MPLA, Brief Review

    A covariant entropy conjecture on cosmological dynamical horizon

    Full text link
    We here propose a covariant entropy conjecture on cosmological dynamical horizon. After the formulation of our conjecture, we test its validity in adiabatically expanding universes with open, flat and closed spatial geometry, where our conjecture can also be viewed as a cosmological version of the generalized second law of thermodynamics in some sense.Comment: JHEP style, 9 pages, 1 figure, typos corrected, accepted for publication in JHE

    Proliferation of de Sitter Space

    Get PDF
    I show that de Sitter space disintegrates into an infinite number of copies of itself. This occurs iteratively through a quantum process involving two types of topology change. First a handle is created semiclassically, on which multiple black hole horizons form. Then the black holes evaporate and disappear, splitting the spatial hypersurfaces into large parts. Applied to cosmology, this process leads to the production of a large or infinite number of universes in most models of inflation and yields a new picture of global structure.Comment: 19 pages, LaTeX2e, 4 figure

    Probing entropy bounds with scalar field spacetimes

    Full text link
    We study covariant entropy bounds in dynamical spacetimes with naked singularities. Specifically we study a spherically symmetric massless scalar field solution. The solution is an inhomogeneous cosmology with an initial spacelike singularity, and a naked timelike singularity at the origin. We construct the entropy flux 4-vector for the scalar field, and show by explicit computation that the generalized covariant bound SL(B,B)(A(B)A(B))/4S_{L(B,B')}\le (A(B)-A(B'))/4 is violated for light sheets L(B,B)L(B,B') in the neighbourhood of the (evolving) apparent horizon. We find no violations of the Bousso bound (for which A(B)=0A(B')=0), even though certain sufficient conditions for this bound do not hold. This result therefore shows that these conditions are not necessary.Comment: 10 pages, 5 figures; published version with typos correcte

    Thermodynamics of Schwarzschild-(Anti-)de Sitter Black Holes with account of quantum corrections

    Get PDF
    We discuss the quantum corrections to thermodynamics (and geometry) of S(A)dS BHs using large NN one-loop anomaly induced effective action for dilaton coupled matter (scalars and spinors). It is found the temperature, mass and entropy with account of quantum effects for multiply horizon SdS BH and SAdS BH what also gives the corresponding expressions for their limits: Schwarzschild and de Sitter spaces. In the last case one can talk about quantum correction to entropy of expanding Universe. The anomaly induced action under discussion corresponds to 4d formulation (s-wave approximation, 4d quantum matter is minimal one) as well as 2d formulation (complete effective action, 2d quantum matter is dilaton coupled one). Hence, most of results are given for the same gravitational background with interpretation as 4d quantum corrected BH or 2d quantum corrected dilatonic BH. Quantum aspects of thermodynamics of 4d 't Hooft BH model are also considered.Comment: LaTeX file, 28 pages, some misprints are correcte
    corecore