309 research outputs found

    The Holographic Principle for General Backgrounds

    Get PDF
    We aim to establish the holographic principle as a universal law, rather than a property only of static systems and special space-times. Our covariant formalism yields an upper bound on entropy which applies to both open and closed surfaces, independently of shape or location. It reduces to the Bekenstein bound whenever the latter is expected to hold, but complements it with novel bounds when gravity dominates. In particular, it remains valid in closed FRW cosmologies and in the interior of black holes. We give an explicit construction for obtaining holographic screens in arbitrary space-times (which need not have a boundary). This may aid the search for non-perturbative definitions of quantum gravity in space-times other than AdS.Comment: 15 pages, 4 figures. Based on a talk given at Strings '99. Includes a reply to recent criticism. For more details, examples, and references, see hep-th/9905177 and hep-th/990602

    Flat space physics from holography

    Full text link
    We point out that aspects of quantum mechanics can be derived from the holographic principle, using only a perturbative limit of classical general relativity. In flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter does not contain Newton's constant and cannot operate via gravitational backreaction. Instead, it is protected by - and in this sense, predicts - the Heisenberg uncertainty principle.Comment: 11 pages, 3 figures; v2: minor correction

    Simple sufficient conditions for the generalized covariant entropy bound

    Full text link
    The generalized covariant entropy bound is the conjecture that the entropy of the matter present on any non-expanding null hypersurface L will not exceed the difference between the areas, in Planck units, of the initial and final spatial 2-surfaces bounding L. The generalized Bekenstein bound is a special case which states that the entropy of a weakly gravitating isolated matter system will not exceed the product of its mass and its width. Here we show that both bounds can be derived directly from the following phenomenological assumptions: that entropy can be computed by integrating an entropy current which vanishes on the initial boundary and whose gradient is bounded by the energy density. Though we note that any local description of entropy has intrinsic limitations, we argue that our assumptions apply in a wide regime. We closely follow the framework of an earlier derivation, but our assumptions take a simpler form, making their validity more transparent in some examples.Comment: 7 pages, revte

    Probing entropy bounds with scalar field spacetimes

    Full text link
    We study covariant entropy bounds in dynamical spacetimes with naked singularities. Specifically we study a spherically symmetric massless scalar field solution. The solution is an inhomogeneous cosmology with an initial spacelike singularity, and a naked timelike singularity at the origin. We construct the entropy flux 4-vector for the scalar field, and show by explicit computation that the generalized covariant bound SL(B,B)(A(B)A(B))/4S_{L(B,B')}\le (A(B)-A(B'))/4 is violated for light sheets L(B,B)L(B,B') in the neighbourhood of the (evolving) apparent horizon. We find no violations of the Bousso bound (for which A(B)=0A(B')=0), even though certain sufficient conditions for this bound do not hold. This result therefore shows that these conditions are not necessary.Comment: 10 pages, 5 figures; published version with typos correcte

    Ab Initio Estimates of the Size of the Observable Universe

    Full text link
    When one combines multiverse predictions by Bousso, Hall, and Nomura for the observed age and size of the universe in terms of the proton and electron charge and masses with anthropic predictions of Carter, Carr, and Rees for these masses in terms of the charge, one gets that the age of the universe should be roughly the inverse 64th power, and the cosmological constant should be around the 128th power, of the proton charge. Combining these with a further renormalization group argument gives a single approximate equation for the proton charge, with no continuous adjustable or observed parameters, and with a solution that is within 8% of the observed value. Using this solution gives large logarithms for the age and size of the universe and for the cosmological constant that agree with the observed values within 17%.Comment: 10 pages, LaTe

    A Quantum Bousso Bound

    Get PDF
    The Bousso bound requires that one quarter the area of a closed codimension two spacelike surface exceeds the entropy flux across a certain lightsheet terminating on the surface. The bound can be violated by quantum effects such as Hawking radiation. It is proposed that at the quantum level the bound be modified by adding to the area the quantum entanglement entropy across the surface. The validity of this quantum Bousso bound is proven in a two-dimensional large N dilaton gravity theory.Comment: 17 page

    Holographic Domains of Anti-de Sitter Space

    Full text link
    An AdS_4 brane embedded in AdS_5 exhibits the novel feature that a four-dimensional graviton is localized near the brane, but the majority of the infinite bulk away from the brane where the warp factor diverges does not see four-dimensional gravity. A naive application of the holographic principle from the point of view of the four-dimensional observer would lead to a paradox; a global holographic mapping would require infinite entropy density. In this paper, we show that this paradox is resolved by the proper covariant formulation of the holographic principle. This is the first explicit example of a time-independent metric for which the spacelike formulation of the holographic principle is manifestly inadequate. Further confirmation of the correctness of this approach is that light-rays leaving the brane intersect at the location where we expect four-dimensional gravity to no longer dominate. We also present a simple method of locating CFT excitations dual to a particle in the bulk. We find that the holographic image on the brane moves off to infinity precisely when the particle exits the brane's holographic domain. Our analysis yields an improved understanding of the physics of the AdS_4/AdS_5 model.Comment: 29 pages, 6 figure

    Complementarity Endures: No Firewall for an Infalling Observer

    Full text link
    We argue that the complementarity picture, as interpreted as a reference frame change represented in quantum gravitational Hilbert space, does not suffer from the "firewall paradox" recently discussed by Almheiri, Marolf, Polchinski, and Sully. A quantum state described by a distant observer evolves unitarily, with the evolution law well approximated by semi-classical field equations in the region away from the (stretched) horizon. And yet, a classical infalling observer does not see a violation of the equivalence principle, and thus a firewall, at the horizon. The resolution of the paradox lies in careful considerations on how a (semi-)classical world arises in unitary quantum mechanics describing the whole universe/multiverse.Comment: 11 pages, 1 figure; clarifications and minor revisions; v3: a small calculation added for clarification; v4: some corrections, conclusion unchange

    Making predictions in the multiverse

    Full text link
    I describe reasons to think we are living in an eternally inflating multiverse where the observable "constants" of nature vary from place to place. The major obstacle to making predictions in this context is that we must regulate the infinities of eternal inflation. I review a number of proposed regulators, or measures. Recent work has ruled out a number of measures by showing that they conflict with observation, and focused attention on a few proposals. Further, several different measures have been shown to be equivalent. I describe some of the many nontrivial tests these measures will face as we learn more from theory, experiment, and observation.Comment: 20 pages, 3 figures; invited review for Classical and Quantum Gravity; v2: references improve

    Unitarity and the Hilbert space of quantum gravity

    Full text link
    Under the premises that physics is unitary and black hole evaporation is complete (no remnants, no topology change), there must exist a one-to-one correspondence between states on future null and timelike infinity and on any earlier spacelike Cauchy surface (e.g., slices preceding the formation of the hole). We show that these requirements exclude a large set of semiclassical spacetime configurations from the Hilbert space of quantum gravity. In particular, the highest entropy configurations, which account for almost all of the volume of semiclassical phase space, would not have quantum counterparts, i.e. would not correspond to allowed states in a quantum theory of gravity.Comment: 7 pages, 3 figures, revtex; minor changes in v2 (version published in Class. Quant. Grav.
    corecore