234 research outputs found
The circulatory and metabolic responses to hypoxia in humans - with special reference to adipose tissue physiology and obesity
Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology
Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle
AIMS/HYPOTHESIS: Insulin resistance and type 2 diabetes are associated with mitochondrial dysfunction. The aim of the present study was to test the hypothesis that oxidative phosphorylation and electron transport capacity are diminished in the skeletal muscle of type 2 diabetic subjects, as a result of a reduction in the mitochondrial content. MATERIALS AND METHODS: The O(2) flux capacity of permeabilised muscle fibres from biopsies of the quadriceps in healthy subjects (n = 8; age 58 ± 2 years [mean±SEM]; BMI 28 ± 1 kg/m(2); fasting plasma glucose 5.4 ± 0.2 mmol/l) and patients with type 2 diabetes (n = 11; age 62 ± 2 years; BMI 32 ± 2 kg/m(2); fasting plasma glucose 9.0 ± 0.8 mmol/l) was measured by high-resolution respirometry. RESULTS: O(2) flux expressed per mg of muscle (fresh weight) during ADP-stimulated state 3 respiration was lower (p < 0.05) in patients with type 2 diabetes in the presence of complex I substrate (glutamate) (31 ± 2 vs 43 ± 3 pmol O(2) s(−1) mg(−1)) and in response to glutamate + succinate (parallel electron input from complexes I and II) (63 ± 3 vs 85 ± 6 pmol s(−1) mg(−1)). Further increases in O(2) flux capacity were observed in response to uncoupling by FCCP, but were again lower (p < 0.05) in type 2 diabetic patients than in healthy control subjects (86 ± 4 vs 109 ± 8 pmol s(−1) mg(−1)). However, when O(2) flux was normalised for mitochondrial DNA content or citrate synthase activity, there were no differences in oxidative phosphorylation or electron transport capacity between patients with type 2 diabetes and healthy control subjects. CONCLUSIONS/INTERPRETATION: Mitochondrial function is normal in type 2 diabetes. Blunting of coupled and uncoupled respiration in type 2 diabetic patients can be attributed to lower mitochondrial content
The Circulatory and Metabolic Responses to Hypoxia in Humans - With Special Reference to Adipose Tissue Physiology and Obesity
Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology
Reduced tricarboxylic acid cycle flux in type 2 diabetes mellitus?
AIMS/HYPOTHESIS: Mitochondrial dysfunction has been postulated to underlie muscular fat accumulation, leading to muscular insulin sensitivity and ultimately type 2 diabetes mellitus. Here we re-interpret previously published data on [(13)C]acetate recovery in breath gas obtained during exercise in type 2 diabetic patients and control individuals. METHODS: When infusing [(13)C]palmitate to estimate fat oxidation, part of the label is lost in exchange reactions of the tricarboxylic acid (TCA) cycle. To correct for this loss of label, an acetate recovery factor (ARF) has previously been used, assuming that 100% of the exogenously provided acetate will enter the TCA cycle. The recovery of acetate in breath gas depends on the TCA cycle activity, hence providing an indirect measure of the latter and a marker of mitochondrial function. RESULTS: Re-evaluation of the available literature reveals that the ARF during exercise is highest in lean, healthy individuals, followed by obese individuals and type 2 diabetic patients. CONCLUSIONS/INTERPRETATION: Revisiting previously published findings on the ARF during exercise in type 2 diabetic patients reveals a reduction in muscular TCA cycle flux, reflecting mitochondrial dysfunction, in these patients. How mitochondrial dysfunction is related to type 2 diabetes mellitus-cause or consequence-requires further study
The Ergogenic Effect of Recombinant Human Erythropoietin on V̇O2max Depends on the Severity of Arterial Hypoxemia
Treatment with recombinant human erythropoietin (rhEpo) induces a rise in blood oxygen-carrying capacity (CaO2) that unequivocally enhances maximal oxygen uptake (V̇O2max) during exercise in normoxia, but not when exercise is carried out in severe acute hypoxia. This implies that there should be a threshold altitude at which V̇O2max is less dependent on CaO2. To ascertain which are the mechanisms explaining the interactions between hypoxia, CaO2 and V̇O2max we measured systemic and leg O2 transport and utilization during incremental exercise to exhaustion in normoxia and with different degrees of acute hypoxia in eight rhEpo-treated subjects. Following prolonged rhEpo treatment, the gain in systemic V̇O2max observed in normoxia (6–7%) persisted during mild hypoxia (8% at inspired O2 fraction (FIO2) of 0.173) and was even larger during moderate hypoxia (14–17% at FIO2 = 0.153–0.134). When hypoxia was further augmented to FIO2 = 0.115, there was no rhEpo-induced enhancement of systemic V̇O2max or peak leg V̇O2. The mechanism highlighted by our data is that besides its strong influence on CaO2, rhEpo was found to enhance leg V̇O2max in normoxia through a preferential redistribution of cardiac output toward the exercising legs, whereas this advantageous effect disappeared during severe hypoxia, leaving augmented CaO2 alone insufficient for improving peak leg O2 delivery and V̇O2. Finally, that V̇O2max was largely dependent on CaO2 during moderate hypoxia but became abruptly CaO2-independent by slightly increasing the severity of hypoxia could be an indirect evidence of the appearance of central fatigue
Lower Intrinsic ADP-Stimulated Mitochondrial Respiration Underlies In Vivo Mitochondrial Dysfunction in Muscle of Male Type 2 Diabetic Patients
OBJECTIVE—A lower in vivo mitochondrial function has been reported in both type 2 diabetic patients and first-degree relatives of type 2 diabetic patients. The nature of this reduction is unknown. Here, we tested the hypothesis that a lower intrinsic mitochondrial respiratory capacity may underlie lower in vivo mitochondrial function observed in diabetic patients
Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals
AIMS/HYPOTHESIS: We previously showed that type 2 diabetic patients are characterised by compromised intrinsic mitochondrial function. Here, we examined if exercise training could increase intrinsic mitochondrial function in diabetic patients compared with control individuals. METHODS: Fifteen male type 2 diabetic patients and 14 male control individuals matched for age, BMI and [Formula: see text] enrolled in a 12 week exercise intervention programme. Ex vivo mitochondrial function was assessed by high-resolution respirometry in permeabilised muscle fibres from vastus lateralis muscle. Before and after training, insulin-stimulated glucose disposal was examined during a hyperinsulinaemic-euglycaemic clamp. RESULTS: Diabetic patients had intrinsically lower ADP-stimulated state 3 respiration and lower carbonyl cyanide 4-(trifluoro-methoxy)phenylhydrazone (FCCP)-induced maximal oxidative respiration, both on glutamate and on glutamate and succinate, and in the presence of palmitoyl-carnitine (p < 0.05). After training, diabetic patients and control individuals showed increased state 3 respiration on the previously mentioned substrates (p < 0.05); however, an increase in FCCP-induced maximal oxidative respiration was observed only in diabetic patients (p < 0.05). The increase in mitochondrial respiration was accompanied by a 30% increase in mitochondrial content upon training (p < 0.01). After adjustment for mitochondrial density, state 3 and FCCP-induced maximal oxidative respiration were similar between groups after training. Improvements in mitochondrial respiration were paralleled by improvements in insulin-stimulated glucose disposal in diabetic patients, with a tendency for this in control individuals. CONCLUSIONS/INTERPRETATION: We confirmed lower intrinsic mitochondrial function in diabetic patients compared with control individuals. Diabetic patients increased their mitochondrial content to the same extent as control individuals and had similar intrinsic mitochondrial function, which occurred parallel with improved insulin sensitivity
Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA1c in obese type 2 diabetes patients
Aims/hypothesis: Exercise represents an effective interventional strategy to improve glycaemic control in type 2 diabetes patients. However, the impact of exercise intensity on the benefits of exercise training remains to be established. In the present study, we compared the clinical benefits of 6 months of continuous low- to moderate-intensity exercise training with those of continuous moderate- to high-intensity exercise training, matched for energy expenditure, in obese type 2 diabetes patients. Methods: Fifty male obese type 2 diabetes patients (age 59∈±∈8 years, BMI 32∈± ∈4 kg/m2) participated in a 6 month continuous endurance-type exercise training programme. All participants performed three supervised exercise sessions per week, either 55 min at 50% of whole body peak oxygen uptake left(VO2peak) (low to moderate intensity) or 40 min at 75% of VO2peak (moderate to high intensity). Oral glucose tolerance, blood glycated haemoglobin, lipid profile, body composition, maximal workload capacity, whole body and skeletal muscle oxidative capacity and skeletal muscle fibre type composition were assessed before and after 2 and 6 months of intervention. Results: The entire 6 month intervention programme was completed by 37 participants. Continuous endurance-type exercise training reduced blood glycated haemoglobin levels, LDL-cholesterol concentrations, body weight and leg fat mass, and increased VO2peak, lean muscle mass and skeletal muscle cytochrome c oxidase and citrate synthase activity (p∈<∈0. 05). No differences were observed between the groups training at low to moderate or moderate to high intensity. Conclusions/interpretation: When matched for energy cost, prolonged continuous low- to moderate-intensity endurance-type exercise training is equally effective as continuous moderate- to high-intensity training in lowering blood glycated haemoglobin and increasing whole body and skeletal muscle oxidative capacity in obese type 2 diabetes patients. © 2009 Springer-Verlag
500 ml of blood loss does not decrease non-invasive tissue oxygen saturation (StO2) as measured by near infrared spectroscopy - A hypothesis generating pilot study in healthy adult women
BACKGROUND: The goal when resuscitating trauma patients is to achieve adequate tissue perfusion. One parameter of tissue perfusion is tissue oxygen saturation (StO2), as measured by near infrared spectroscopy. Using a commercially available device, we investigated whether clinically relevant blood loss of 500 ml in healthy volunteers can be detected by changes in StO2 after a standardized ischemic event.
METHODS: We performed occlusion of the brachial artery for 3 minutes in 20 healthy female blood donors before and after blood donation. StO2 and total oxygenated tissue hemoglobin (O2Hb) were measured continuously at the thenar eminence. 10 healthy volunteers were assessed in the same way, to examine whether repeated vascular occlusion without blood donation exhibits time dependent effects.
RESULTS: Blood donation caused a substantial decrease in systolic blood pressure, but did not affect resting StO2 and O2Hb values. No changes were measured in the blood donor group in the reaction to the vascular occlusion test, but in the control group there was an increase in the O2Hb rate of recovery during the reperfusion phase.
CONCLUSION: StO2 measured at the thenar eminence seems to be insensitive to blood loss of 500 ml in this setting. Probably blood loss greater than this might lead to detectable changes guiding the treating physician. The exact cut off for detectable changes and the time effect on repeated vascular occlusion tests should be explored further. Until now no such data exist
- …