26 research outputs found

    Next-generation ARIA care pathways for rhinitis and asthma : a model for multimorbid chronic diseases

    Get PDF
    Background In all societies, the burden and cost of allergic and chronic respiratory diseases are increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system into integrated care with organizational health literacy. Main body As an example for chronic disease care, MASK (Mobile Airways Sentinel NetworK), a new project of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative, and POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health), in collaboration with professional and patient organizations in the field of allergy and airway diseases, are proposing real-life ICPs centred around the patient with rhinitis, and using mHealth to monitor environmental exposure. Three aspects of care pathways are being developed: (i) Patient participation, health literacy and self-care through technology-assisted "patient activation", (ii) Implementation of care pathways by pharmacists and (iii) Next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) obtained through mobile technology. The EU and global political agendas are of great importance in supporting the digital transformation of health and care, and MASK has been recognized by DG Sante as a Good Practice in the field of digitally-enabled, integrated, person-centred care. Conclusion In 20 years, ARIA has considerably evolved from the first multimorbidity guideline in respiratory diseases to the digital transformation of health and care with a strong political involvement.Peer reviewe

    Next-generation ARIA care pathways for rhinitis and asthma: a model for multimorbid chronic diseases

    Get PDF
    Background In all societies, the burden and cost of allergic and chronic respiratory diseases are increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system into integrated care with organizational health literacy. Main body As an example for chronic disease care, MASK (Mobile Airways Sentinel NetworK), a new project of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative, and POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health), in collaboration with professional and patient organizations in the field of allergy and airway diseases, are proposing real-life ICPs centred around the patient with rhinitis, and using mHealth to monitor environmental exposure. Three aspects of care pathways are being developed: (i) Patient participation, health literacy and self-care through technology-assisted "patient activation", (ii) Implementation of care pathways by pharmacists and (iii) Next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) obtained through mobile technology. The EU and global political agendas are of great importance in supporting the digital transformation of health and care, and MASK has been recognized by DG Sante as a Good Practice in the field of digitally-enabled, integrated, person-centred care. Conclusion In 20 years, ARIA has considerably evolved from the first multimorbidity guideline in respiratory diseases to the digital transformation of health and care with a strong political involvement

    Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide: Eliminating Dimerization and Altering Catalysis

    No full text
    With the goal of improving previously reported Mn bipyridine electrocatalysts in terms of increased activity and reduced overpotential, a bulky bipyridine ligand, 6,6′-dimesityl-2,2′-bipyridine (mesbpy), was utilized to eliminate dimerization in the catalytic cycle. Synthesis, electrocatalytic properties, X-ray diffraction (XRD) studies, and infrared spectroelectrochemistry (IR-SEC) of Mn(mesbpy)(CO)3Br and [Mn(mesbpy)(CO)3(MeCN)](OTf) are reported. Unlike previously reported Mn bipyridine catalysts, these Mn complexes exhibit a single, two-electron reduction wave under nitrogen, with no evidence of dimerization. The anionic complex, [Mn(mesbpy)(CO)3]−, is formed at 300 mV more positive potential than the corresponding state is formed in typical Mn bipyridine catalysts. IR-SEC experiments and chemical reductions with KC8 provide insights into the species leading up to the anionic state, specifically that both the singly reduced and doubly reduced Mn complexes form at the same potential. When formed, the anionic complex binds CO2 with H+, but catalytic activity does not occur until a ∼400 mV more negative potential is present. The Mn complexes show high activity and Faradaic efficiency for CO2 reduction to CO with the addition of weak Brønsted acids. IR-SEC experiments under CO2/H+ indicate that reduction of a Mn(I)–CO2H catalytic intermediate may be the cause of this unusual “over-reduction” required to initiate catalysis

    Accelerating proton-coupled electron transfer of metal hydrides in catalyst model reactions

    No full text
    Metal hydrides are key intermediates in catalytic proton reduction and dihydrogen oxidation. There is currently much interest in appending proton relays near the metal centre to accelerate catalysis by proton-coupled electron transfer (PCET). However, the elementary PCET steps and the role of the proton relays are still poorly understood, and direct kinetic studies of these processes are scarce. Here, we report a series of tungsten hydride complexes as proxy catalysts, with covalently attached pyridyl groups as proton acceptors. The rate of their PCET reaction with external oxidants is increased by several orders of magnitude compared to that of the analogous systems with external pyridine on account of facilitated proton transfer. Moreover, the mechanism of the PCET reaction is altered by the appended bases. A unique feature is that the reaction can be tuned to follow three distinct PCET mechanisms-electron-first, proton-first or a concerted reaction-with very different sensitivities to oxidant and base strength. Such knowledge is crucial for rational improvements of solar fuel catalysts
    corecore