426 research outputs found

    Aspects of four-jet production in polarized proton-proton collisions

    Full text link
    We examine the intrinsic spin-dependence of the dominant gg→gggggg \rightarrow gggg subprocess contribution to four-jet production in polarized proton-proton collisions using helicity amplitude techniques. We find that the partonic level, longitudinal spin-spin asymmetry, a^LL\hat{a}_{LL}, is intrinsically large in the kinematic regions probed in experiments detecting four isolated jets. Such events may provide another qualitative or semi-quantitative test of the spin-structure of QCD in planned polarized pppp collisions at RHIC.Comment: 9 pages, LaTeX, 2 uuencoded postscript files attache

    Allelopathic Effects of Water Hyacinth [Eichhornia crassipes]

    Get PDF
    Eichhornia crassipes (Mart) Solms is an invasive weed known to out-compete native plants and negatively affect microbes including phytoplankton. The spread and population density of E. crassipes will be favored by global warming. The aim here was to identify compounds that underlie the effects on microbes. The entire plant of E. crassipes was collected from El Zomor canal, River Nile (Egypt), washed clean, then air dried. Plant tissue was extracted three times with methanol and fractionated by thin layer chromatography (TLC). The crude methanolic extract and five fractions from TLC (A–E) were tested for antimicrobial (bacteria and fungal) and anti-algal activities (green microalgae and cyanobacteria) using paper disc diffusion bioassay. The crude extract as well as all five TLC fractions exhibited antibacterial activities against both the Gram positive bacteria; Bacillus subtilis and Streptococcus faecalis; and the Gram negative bacteria; Escherichia coli and Staphylococcus aureus. Growth of Aspergillus flavus and Aspergillus niger were not inhibited by either E. crassipes crude extract nor its five fractions. In contrast, Candida albicans (yeast) was inhibited by all. Some antialgal activity of the crude extract and its fractions was manifest against the green microalgae; Chlorella vulgaris and Dictyochloropsis splendida as well as the cyanobacteria; Spirulina platensis and Nostoc piscinale. High antialgal activity was only recorded against Chlorella vulgaris. Identifications of the active antimicrobial and antialgal compounds of the crude extract as well as the five TLC fractions were carried out using gas chromatography combined with mass spectroscopy. The analyses showed the presence of an alkaloid (fraction A) and four phthalate derivatives (Fractions B–E) that exhibited the antimicrobial and antialgal activities
    • 

    corecore