1,227 research outputs found

    Hyperon semileptonic decays and quark spin content of the proton

    Get PDF
    We investigate the hyperon semileptonic decays and the quark spin content of the proton ΔΣ\Delta \Sigma taking into account flavor SU(3) symmetry breaking. Symmetry breaking is implemented with the help of the chiral quark-soliton model in an approach, in which the dynamical parameters are fixed by the experimental data for six hyperon semileptonic decay constants. As a result we predict the unmeasured decay constants, particularly for Ξ0Σ+\Xi^0 \to \Sigma^+, which will be soon measured and examine the effect of the SU(3) symmetry breaking on the spin content ΔΣ\Delta \Sigma of the proton. Unfortunately large experimental errors of Ξ\Xi^- decays propagate in our analysis making ΔΣ\Delta \Sigma and Δs\Delta s practically undetermined. We conclude that statements concerning the values of these two quantities, which are based on the exact SU(3) symmetry, are premature. We stress that the meaningful results can be obtained only if the experimental errors for the Ξ\Xi decays are reduced.Comment: The final version accepted for publication in Phys. Rev. D. 18 pages, RevTex is used with 4 figures include

    Isospin Breaking in Neutron β\beta-decay and SU(3) Violation in Semi-leptonic Hyperon Decays

    Get PDF
    Present precision measurements of the neutron life time lead to a CKM matrix element Vud|V_{ud}| which is three standard deviations off the value inferred from heavy quark decays etc. We investigate the possibility whether isospin-breaking effects in the neutron-to-proton vector current transition matrix element =1+δgV=1+\delta g_V could eventually close this gap. For that we calculate in chiral perturbation theory the effect of pion and kaon loops on the matrix element taking into account the mass differences of the charged and neutral mesons. We find a negligibly small isospin-breaking effect of δgV4105\delta g_V \simeq -4 \cdot 10^{-5}. The crucial quantity in the analysis of neutron beta-decay precision measurements is thus the radiative correction term ΔR\Delta_R. Furthermore, we calculate in heavy baryon chiral perturbation theory the SU(3) breaking effects on the vector transition charges of weak semi-leptonic hyperon decays. We find for these quantities channel-dependent relative deviations from the SU(3) limit which range from -10% to +1+1%.Comment: 6 pages, 1 figure, to be published in Physical Review C (brief report

    Sea Contributions and Nucleon Structure

    Full text link
    We suggest a general formalism to treat a baryon as a composite system of three quarks and a `sea'. In this formalism, the sea is a cluster which can consists of gluons and quark-antiquark pairs. The hadron wave function with a sea component is given. The magnetic moments, related sum rules and axial weak coupling constants are obtained. The data seems to favor a vector sea rather than a scalar sea. The quark spin distributions in the nucleon are also discussed.Comment: 24 page

    Veneziano Ghost Versus Isospin Breaking

    Full text link
    It is argued that an account for the Veneziano ghost pole, appearing in resolving the U(1) problem, is necessary for understanding an isospin violation in the πηη \pi - \eta - \eta' system. By virtue of a perturbative expansion around the SU(2)V SU(2)_{V} ( mu=md m_{u} = m_{d} ) symmetric Veneziano solution, we find that the ghost considerably suppresses isospin breaking gluon and s-quark matrix elements. We speculate further on a few cases where the proposed mechanism can play an essential role. We discuss the isospin violation in meson-nucleon couplings and its relevance to the problem of charge asymmetric nuclear forces and possible breaking of the Bjorken sum rule. It is shown that the ghost pole could yield the isospin violation of order 2 \% for the πN \pi N couplings and 20 \% for the Bjorken sum rule.Comment: 16 pages , Preprint TAUP-2127-9

    Semileptonic decay constants of octet baryons in the chiral quark-soliton model

    Get PDF
    Based on the recent study of the magnetic moments and axial constants within the framework of the chiral quark-soliton model, we investigate the baryon semileptonic decay constants (f1,f2)(f_1,f_2) and (g1,g2)(g_1, g_2). Employing the relations between the diagonal transition matrix elements and off-diagonal ones in the vector and axial-vector channels, we obtain the ratios of baryon semileptonic decay constants f2/f1f_2/f_1 and g1/f1g_1/f_1. The F/DF/D ratio is also discussed and found that the value predicted by the present model naturally lies between that of the Skyrme model and that of the nonrelativistic quark model. The singlet axial constant gA(0)g^{(0)}_A can be expressed in terms of the F/DF/D ratio and gA(3)g^{(3)}_A in the present model and turns out to be small. The results are compared with available experimental data and found to be in good agreement with them. In addition, the induced pseudotensor coupling constants g2/f1g_2/f_1 are calculated, the SU(3) symmetry breaking being considered. The results indicate that the effect of SU(3) symmetry breaking might play an important role for some decay modes in hyperon semileptonic decay.Comment: 16 pages, RevTeX is used. No figure. Accepted for publication in Phys. Rev.

    Evidence for SU(3) symmetry breaking from hyperon production

    Get PDF
    We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD) by considering two typical sets of quark contributions to the spin content of the octet baryons: Set-1 with SU(3) flavor symmetry and Set-2 with SU(3) flavor symmetry breaking in HSD. The quark distributions of the octet baryons are calculated with a successful statistical model. Using an approximate relation between the quark fragmentation functions and the quark distributions, we predict polarizations of the octet baryons produced in e+ee^+e^- annihilation and semi-inclusive deeply lepton-nucleon scattering in order to reveal the SU(3) symmetry breaking effect on the spin structure of the octet baryons. We find that the SU(3) symmetry breaking significantly affects the hyperon polarization. The available experimental data on the Λ\Lambda polarization seem to favor the theoretical predictions with SU(3) symmetry breaking. We conclude that there is a possibility to get a collateral evidence for SU(3) symmetry breaking from hyperon production. The theoretical errors for our predictions are discussed.Comment: 3 tables, 14 figure

    Right Handed Weak Currents in Sum Rules for Axialvector Constant Renormalization

    Get PDF
    The recent experimental results on deep inelastic polarized lepton scattering off proton, deuteron and 3^{3}He together with polari% zed neutron β\beta-decay data are analyzed. It is shown that the problem of Ellis-Jaffe and Bjorken sum rules deficiency and the neutron paradox could be solved simultaneously by assuming the small right handed current (RHC) admixture in the weak interaction Lagrangian. The possible RHC impact on pion-nucleon σ\sigma-term and Gamow-Teller sum rule for (p,n)(p,n) nuclear reactions is pointed out.Comment: to be published in Phys. Rev. Lett. LaTeX, 8 pages, 21 k

    Nuclei in a chiral SU(3) model

    Get PDF
    Nuclei can be described satisfactorily in a nonlinear chiral SU(3)-framework, even with standard potentials of the linear σ\sigma-model. The condensate value of the strange scalar meson is found to be important for the properties of nuclei even without adding hyperons. By neglecting terms which couple the strange to the nonstrange condensate one can reduce the model to a Walecka model structure embedded in SU(3). We discuss inherent problems with chiral SU(3) models regarding hyperon optical potentials.Comment: 25 pages, RevTe

    Experiments to Find or Exclude a Long-Lived, Light Gluino

    Get PDF
    Gluinos in the mass range ~1 1/2 - 3 1/2 GeV are absolutely excluded. Lighter gluinos are allowed, except for certain ranges of lifetime. Only small parts of the mass-lifetime parameter space are excluded for larger masses unless the lifetime is shorter than ~ 2 10^{-11} (m_{gluino}/ GeV) sec. Refined mass and lifetime estimates for R-hadrons are given, present direct and indirect experimental constraints are reviewed, and experiments to find or definitively exclude these possibilities are suggested.Comment: 27 pp, latex with 1 uufiled figure, RU-94-35. New version amplifies discussion of some points and corresponds to version for Phys. Rev.
    corecore