36 research outputs found

    Optical properties of materials for 157 nm lithography

    Get PDF
    A survey of optical properties of sputtered materials in the spectral range of 145 nm to 800 nm has been performed. The optical constants n and k have been measured using ellipsometric techniques. Four combination materials have been created with the properties suitable for application in Attenuated Phase Shift Mask (APSM) manufacturing. The four combination materials have also been characterized, with the results presented

    Automated Aberration Extraction Using Phase Wheel Targets

    Get PDF
    An approach to in-situ wavefront aberration measurement is explored. The test is applicable to sensing aberrations from the image plane of a microlithography projection system or a mask inspection tool. A set of example results is presented which indicate that the method performs well on lenses with a Strehl ratio above 0.97. The method uses patterns produced by an open phase figure1 to determine the deviation of the target image from its ideal shape due to aberrations. A numerical solution in the form of Zernike polynomial coefficients is reached by modeling the object interaction with aberrated pupil function using the nonlinear optimization routine over the possible deformations to give an accurate account of the image detail in 2-D. The numerical accuracy for the example below indicated superb performance of the chosen target shapes with only a single illumination setup

    Effects of Beam Pointing Instability on Two-Beam Interferometric Lithography

    Get PDF
    In a photolithographic system, the mask patterns are imaged through a set of lenses on a resist-coated wafer. The image of mask patterns physically can be viewed as the interference of the plane waves of the diffraction spectrum captured by the lens set incident on the wafer plane at a spectrum of angles. Two-beam interference fringe is the simplest format of the image. Consequently, two-beam interferometric lithography is often employed for photolithographic researches. For two-beam interferometric lithography, beam pointing instability of the illumination source can induce fringe displacement, which results in a loss of fringe contrast if it happens during the exposure. Since some extent of beam pointing instability is not avoidable, it is necessary to investigate its effects on the contrast of the interference fringe. In this paper, the effects of beam pointing instability associated with a two beam interferometric lithography setup are analyzed. Using geometrical ray tracing technique and basic interference theory, the relationship between the beam tilt angle and interference fringe displacement is established. For a beam pointing instability with random distribution, the resulted fringe contrast is directly proportional to the Fourier transform of the pointing distribution evaluated at 1/2(pi). The effect of a pointing instability with normal distribution on interference contrast is numerically investigated

    Photoresist Modulation Curves

    Get PDF
    Photoresist modulation curves are introduced as a quantitative way to characterize the photoresist process performance when used as a detector in a microlithographic system. The new method allows predicting exposure latitude of the photoresist process across a wide range of resolutions and modulation levels of the aerial image. The data collection process is demonstrated using an immersion interference system, capable of variable resolution and full control over the modulation of the delivered aerial image

    Water Immersion Optical Lithography for the 45nm Node

    Get PDF
    It is possible to extend optical lithography by using immersion imaging methods. Historically, the application of immersion optics to microlithography has not been seriously pursued because of the alternative solutions available. As the challenges of shorter wavelength become increasingly difficult, immersion imaging becomes more feasible. We present results from research into 193nm excimer laser immersion lithography at extreme propagation angles (such as those produces with strong OAI and PSM). This is being carried out in a fluid that is most compatible in a manufacturable process, namely water. By designing a system around the optical properties of water, we are able to image with wavelengths down to 193nm. Measured absorption is below 0.50 cm at 185nm and below 0.05 cm\u27 at 193nm. Furthermore, through the development of oblique angle imaging, numerical apertures approaching 1.0 in air and 1.44 in water are feasible. The refractive index of water at 193nm (1.44) allows for exploration of the following: 1. k1 values approaching 0. 17 and optical lithography approaching 35nm. 2. Polarization effects at oblique angles (extreme NA). 3. Immersion and photoresist interactions with polarization. 4. Immersion fluid composition, temperature, flow, and micro-bubble influence on optical properties (index, absorption, aberration, birefringence). 5. Mechanical requirements for imaging, scanning, and wafer transport in a water media. 6. Synthesizing conventional projection imaging via interferometric imaging

    Experimental Measurement of Photoresist Modulation Curves

    Get PDF
    An approach to measurement of resist CD response to image modulation and dose is presented. An empirical model with just three terms is used to describe this response, allowing for direct calculation of photoresist modulation curves. A thresholded latent image response model has been tested to describe CD response for both 90 nm and 45 nm geometry. An assumption of a linear optical image to photoresist latent image correlation is shown as adequate for the 90 nm case, while the 45 nm case demonstrates significant non-linear behavior. This failure indicates the inadequacy of a “resist blur” as a complete descriptive function and uncovers the need for an additional spread function in OPE-style resist models

    Resist Process Window Characterization for the 45-nm Node Using an Interferometric Immersion microstepper

    Get PDF
    Projection and interference imaging modalities for application to IC microlithography were compared at the 90 nm imaging node. The basis for comparison included simulated two-dimensional image in resist, simulated resist linesize, as well as experimental resist linesize response through a wide range of dose and focus values. Using resist CD as the main response (both in simulation and experimental comparisons), the two imaging modes were found nearly equivalent, as long as a suitable Focus-Modulation conversion is used. A Focus-Modulation lookup table was generated for the 45 nm imaging node, and experimental resist response was measured using an interferometric tool. A process window was constructed to match a hypothetical projection tool, with an estimated error of prediction of 0.6 nm. A demodulated interferometric imaging technique was determined to be a viable method for experimental measurement of process window data. As long as accurate assumptions can be made about the optical performance of such projection tools, the response of photoresist to the delivered image can be studied experimentally using the demodulated interferometric imaging approach

    Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography

    Get PDF
    As an emerging technique, immersion lithography offers the capability of reducing critical dimensions by increasing numerical aperture (NA) due to the higher refractive indices of immersion liquids than that of air. Among the candidates for immersion liquids, water appears to be an excellent choice due to its high transparency at a wavelength of 193 nm, as well as its immediate availability and low processing cost. However, in the process of forming a water fluid layer between the resist and lens surfaces, air bubbles are often created due to the high surface tension of water. The presence of air bubbles in the immersion layer will degrade the image quality because of the inhomogeneity induced light scattering in the optical path. Therefore, it is essential to understand the air bubble induced light scattering effect on image quality. Analysis by geometrical optics indicates that the total reflection of light causes the enhancement of scattering in the region where the scattering angle is less than the critical scattering angle, which is 92 degrees at 193 nm. Based on Mie theory, numerical evaluation of scattering due to air bubbles, polystyrene spheres and PMMA spheres was conducted for TE, TM or unpolarized incident light. Comparison of the scattering patterns shows that the polystyrene spheres and air bubbles resemble each other with respect to scattering properties. Hence polystyrene spheres are used to mimic air bubbles in studies of lithographic imaging of “bubbles” in immersion water. In direct interference lithography, it is found that polystyrene spheres (2 μm in diameter) 0.3 mm away from the resist surface would not image, while for interferometric lithography at 0.5NA, this distance is estimated to be 1.3 mm. Surprisingly, polystyrene spheres in diameter of 0.5 μm (which is 5 times larger than the interferometric line-width) will not image. It is proposed that “bubbles” are repelled from contact with the resist film by surface tension. The scatter of exposure light can be characterized as “flare”. This work shows that microbubbles are not a technical barrier to immersion lithography

    Amphibian XIS: An Immersion Lithography Microstepper Platform

    Get PDF
    Recent advances in immersion lithography have created the need for a small field microstepper to carry out the early learning necessary for next generation device application. Combined with fluid immersion, multiple-beam lithography can provide an opportunity to explore lithographic imaging at oblique propagation angles and extreme NA imaging. Using the phase preserving properties of Smith Talbot interferometry, the Amphibian XIS immersion lithography microstepper has been created for research and development applications directed toward sub-90nm patterning. The system has been designed for use at ArF and KrF excimer laser wavelengths, based on a fused silica or sapphire prism lens with numerical aperture values up to 1.60. Combined with a chromeless phase grating mask, two and four beam imaging is made possible for feature resolution to 35nm. The approach is combined with X-Y staging to provide immersion imaging on a microstepper platform for substrates ranging up to 300mm. The Amphibian system consists of single or dual wavelength sources (193nm and 248nm), a 2mm exposure field size, stage accuracy better than 1 um, polarization control over a full range from linear polarization to unpolarized illumination, full control of exposure dose and demodulation (to synthesize defocus), and the ability to image both line patterns as well as contact features. A fluid control system allows use of water or alternative fluids, with the ability to change fluids rapidly between wafers. The Amphibian system is fully enclosed in a HEPA and amine controlled environment for use in fab or research environments

    ILSim: A Compact Simulation Tool for Interferometric Lithography

    Get PDF
    Interference imaging systems are being used more extensively for R&D applications where NA manipulation, polarization control, relative beam attenuation, and other parameters are explored and projection imaging approaches may not exist. To facilitate interferometric lithography research, we have developed a compact simulation tool, ILSim, for studying multi-beam interferometric imaging, including fluid immersion lithography. The simulator is based on full-vector interference theory, which allows for application at extremely high NA values, such as those projected for use with immersion lithography. In this paper, ILSim is demonstrated for use with two-beam and four-beam interferometric immersion lithography. The simulation tool was written with Matlab, where the thin film assembly (ambient, top coat, resist layer, BARC layers, and substrate) and illumination conditions (wavelength, polarization state, interference angle, demodulation, NA) can be defined. The light intensity distributions within the resist film for 1 exposure or 2-pass exposure are displayed in the graph window. It also can optimize BARC layer thickness and top coat thickness
    corecore