18 research outputs found
Recommended from our members
Novel Phosphorylation Sites in the S. cerevisiae Cdc13 Protein Reveal New Targets for Telomere Length Regulation
The S. cerevisiae Cdc13 is a multifunctional protein with key roles in regulation of telomerase, telomere end protection, and conventional telomere replication, all of which are cell cycle-regulated processes. Given that phosphorylation is a key mechanism for regulating protein function, we identified sites of phosphorylation using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). We also determined phosphorylation abundance on both wild type (WT) and a telomerase deficient form of Cdc13, encoded by the cdc13-2 allele, in both G1 phase cells, when telomerase is not active, and G2/M phase cells, when it is. We identified 21 sites of in vivo phosphorylation, of which only five had been reported previously. In contrast, phosphorylation of two in vitro targets of the ATM-like Tel1 kinase, S249 and S255, was not detected. This result helps resolve conflicting data on the importance of phosphorylation of these residues in telomerase recruitment. multiple residues showed differences in their cell cycle pattern of modification. For example, phosphorylation of S314 was significantly higher in the G2/M compared to the G1 phase and in WT versus mutant Cdc13, and a S314D mutation negatively affected telomere length. Our findings provide new targets in a key telomerase regulatory protein for modulation of telomere dynamics. [Image: see text
Research prioritisation exercises related to the care of children and young people with life-limiting conditions, their parents, and all those who care for them : a systematic scoping review
Background: In planning high quality research in any aspect of care for children and young people with life-limiting conditions it is important to prioritise resources in the most appropriate areas. Aim: To map research priorities identified from existing research prioritisation exercises relevant to infants, children, and young people with life-limiting conditions, in order to inform future research. Design: We undertook a systematic scoping review to identify existing research prioritisation exercises; the protocol is publicly available on the project website. Data sources: The bibliographic databases ASSIA, CINAHL, MEDLINE/MEDLINE In Process and Embase were searched from 2000. Relevant reference lists and websites were hand searched. Included were any consultations aimed at identifying research for the benefit of neonates, infants, children and/or young people (birth to age 25 years) with life-limiting, -threatening or -shortening conditions; their family, parents, carers; and/or the professional staff caring for them. Results: Twenty four research prioritisation exercises met the inclusion criteria, from which 279 research questions or priority areas for health research were identified. The priorities were iteratively mapped onto an evolving framework, informed by WHO classifications. This resulted in identification of 16 topic areas, 55 sub-topics and 12 sub-sub-topics. Conclusions: There are numerous similar and overlapping research prioritisation exercises related to children and young people with life-limiting conditions. By mapping existing research priorities in the context in which they were set, we highlight areas to focus research efforts on. Further priority setting is not required at this time unless devoted to ascertaining families’ perspectives
Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening
Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure
Telomere maintenance and length regulation in Trypanosoma brucei
Transcription of telomere proximal variant surface glycoprotein genes is mono-allelic in bloodstream-form Trypanosoma brucei. The terminal DNA sequence at these telomeres consists of tandem T(2)AG(3) repeats, which increase in length by ∼8 bp per cell division balanced by occasional loss of large numbers of repeats. Here we have used targeted chromosome fragmentation to investigate the sequence requirements for telomere formation in T.brucei. Telomere formation is most efficient on tandem T(2)AG(3) repeats, but can also occur on specific templates found within ‘random’ sequence substrates and on G-rich motifs proximal to a double-strand break. Newly formed telomeres are extended faster than other native telomeres, but as the telomere becomes longer the rate of extension declines. Telomere length regulation in T.brucei is discussed in the context of recent results from other cell types
Telomeric Protein Distributions and Remodeling Through the Cell Cycle in Saccharomyces cerevisiae
In Saccharomyces cerevisiae, telomeric DNA is protected by a nonnucleosomal protein complex, tethered by the protein Rap1. Rif and Sir proteins, which interact with Rap1p, are thought to have further interactions with conventional nucleosomic chromatin to create a repressive structure that protects the chromosome end. We showed by microarray analysis that Rif1p association with the chromosome ends extends to subtelomeric regions many kilobases internal to the terminal telomeric repeats and correlates strongly with the previously determined genomic footprints of Rap1p and the Sir2-4 proteins in these regions. Although the end-protection function of telomeres is essential for genomic stability, telomeric DNA must also be copied by the conventional DNA replication machinery and replenished by telomerase, suggesting that transient remodeling of the telomeric chromatin might result in distinct protein complexes at different stages of the cell cycle. Using chromatin immunoprecipitation, we monitored the association of Rap1p, Rif1p, Rif2p, and the protein component of telomerase, Est2p, with telomeric DNA through the cell cycle. We provide evidence for dynamic remodeling of these components at telomeres