175 research outputs found

    Unit Pricing and Open Dating.

    Get PDF
    4 p

    Redescription of \u3cem\u3eAtopospira galeata\u3c/em\u3e (Kahl, 1927) nov. comb. and \u3cem\u3eA. violacea\u3c/em\u3e (Kahl, 1926) nov. comb. with Redefinition of \u3cem\u3eAtopospira\u3c/em\u3e Jankowski, 1964 nov. stat. and \u3cem\u3eBrachonella\u3c/em\u3e Jankowski, 1964 (Ciliophora, Armophorida)

    Get PDF
    The taxonomy of the Metopidae (Ciliophora, Armophorida) remains poorly understood since most of its members have not been studied by modern morphologic and molecular methods. Recent molecular investigations have indicated that the two most species-rich genera, Metopus and Brachonella, are likely nonmonophyletic with at least one well-supported 18S rDNA clade comprised of a species from each of these genera (Brachonella galeata and Metopus violaceus). We investigated these two species with silver impregnation and scanning electron microscopy. Both taxa share important morphologic characteristics not described in other species of Metopus or Brachonella. These synapomorphies include: (1) a diplostichomonad paroral membrane, (2) a bipartite adoral zone with a short buccal part composed of ordinary membranelles and a longer distal part composed of much smaller membranelles bearing a single cilium or none and extending the same length as the perzonal ciliary stripe. We transfer Brachonella galeata(Kahl, 1927) Jankowski, 1964 and Metopus violaceus Kahl, 1926 to genus Atopospira Jankowski, 1964 nov. stat. Pending detailed morphologic and molecular characterization, Brachonella campanula, B. cydonia andB. pyriforma, B. intercedens, and B. lemani remain in Brachonella Jankowski 1964

    Morphology and Phylogeny of a New Woodruffiid Ciliate, \u3cem\u3eEtoschophrya inornata\u3c/em\u3e sp. n. (Ciliophora, Colpodea, Platyophryida), with an Account on Evolution of Platyophryids

    Get PDF
    We studied the morphology, morphometry, resting cysts and molecular phylogeny of a new woodruffiid ciliate, Etoschophrya inornata, from ephemeral puddles and two lacustrine habitats in Idaho, North-west USA. Up to now, the genus Etoschophrya has included a single species, Etoschophrya oscillatoriophaga, from which our new form is distinguished by (i) the absence of interkinetal cortical granules and, consequently, the absence of extrusible red material in methyl green-pyronin stains, (ii) usually ≥5 adoral membranelles vs. usually four, (iii) greater length and length/width ratio, (iv) prominent cortical furrows vs. inconspicuous and (v) adaptation to non-saline semi-terrestrial and lacustrine habitats in the Nearctic vs. highly saline alkaline Afrotropic soil habitats. Resting cysts have two distinct membranes and a thick hyaline mucous pericyst layer. However, only one membrane persists in older cysts. Like its congener, Etoschophrya inornata feeds exclusively on filamentous cyanobacteria. The 18S rRNA gene sequence places this species in a strongly supported clade with Kuklikophrya ougandae basal to the other platyophryids. We include a morphologic cladistic analysis of platyophryid ciliates and present a hypothetical scenario for the evolution of the platyophryid oral structures

    Protargol Synthesis: An In-House Protocol

    Get PDF
    The protargol staining method has proved to be indispensable for revealing the cellular structures of a variety of protozoa, especially the flagellates and ciliates. Protargol provides permanent stains of a variety of cellular structures: nuclei, extrusomes, basal bodies, and microfilamentous constituents of cells. Together with the older silver nitrate methods, protargol impregnations have provided the basis for the detailed descriptions of nearly all ciliates to date. The performance of commercially available preparations has varied widely. Recently, suppliers have stopped stocking the effective forms of protargol resulting in a worldwide shortage. Thus, it has become necessary for protistologists to explore on-site synthesis of this critically important agent. An optimum protocol for synthesis of protargol should be rapid, relatively inexpensive, simple enough to be done by non-chemists, and achievable without specialized equipment. In this article, the authors briefly review the interesting history of protargol and describe a protocol, based on the early studies of neuroanatomists, that yields a protargol producing impregnations of ciliates comparable to those obtained with previously available commercial preparations

    \u3cem\u3eAgolohymena aspidocauda\u3c/em\u3e nov. gen., nov. spec., a Histophagous Freshwater Tetrahymenid Ciliate in the Family Deltopylidae (Ciliophora, Hymenostomatia), from Idaho (Northwest U.S.A.): Morphology, Ontogenesis and Molecular Phylogeny

    Get PDF
    Morphology, ontogeny and the molecular phylogeny of Agolohymena aspidocauda nov. gen., nov. spec., a new freshwater tetrahymenid ciliate from Idaho, U.S.A, are described. The ontogeny and histophagous mode of nutrition are similar to those of Deltopylum rhabdoides Fauré-Fremiet and Mugard, 1946. The new genus is placed with Deltopylum in the resurrected family Deltopylidae Song & Wilbert, 1989. We emend the diagnostic features of the family to include division by polytomy, right and left somatic kineties extending into the preoral suture, crook-shaped or sigmoid adoral membranelles 1 and 2, markedly reduced adoral membranelle 3 and a tetrahymenid silverline pattern. The main diagnostic features of the new genus are a disc-shaped caudal ciliary array and formation of two types of resting cysts, one smooth and the other bearing tangled tubular or cylindrical lepidosomes. Nuclear small subunit ribosomal RNA gene and mitochondrial cytochrome oxidase subunit 1 gene sequences place the new genus basal within the order Tetrahymenida, well separated from members of the family Tetrahymenidae (Lambornella and Tetrahymena) and also from other tetrahymenids (Colpidium, Dexiostoma, Glaucoma). The genetic divergences between this species and other genera in Tetrahymenida are large enough to suggest placement of the new genus in a separate family. This corroborates the morphological data, since the elaborate caudal ciliary array and the lepidosome-covered resting cyst of this species are not found in other Tetrahymenidae

    Genealogical analyses of multiple loci of litostomatean ciliates (Protista, Ciliophora, Litostomatea)

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Phylogenetics and Evolution 66 (2012): 397-411, doi:10.1016/j.ympev.2012.06.024.The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria + Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment.Financial support was provided by the Austrian Science Foundation (FWF Projects P-19699-B17 and P-20360-B17 to Wilhelm Foissner), the Slovak Scientific Grant Agency (VEGA Project 1/0600/11 to Peter Vd’ačný), and US NSF Grants (Projects MCB-0348341 and DEB-0816840 to Slava S. Epstein)

    Nullomer Derived Anticancer Peptides (NulloPs): Differential Lethal Effects on Normal and Cancer Cells \u3cem\u3ein vitro\u3c/em\u3e

    Get PDF
    We demonstrate the first use of the nullomer (absent sequences) approach to drug discovery and development. Nullomers are the shortest absent sequences determined in a species, or group of species. By identifying the shortest absent peptide sequences from the NCBI databases, we screened several potential anti-cancer peptides. In order to improve cell penetration and solubility we added short poly arginine tails (5Rs), and initially solubilized the peptides in1M trehalose. The results for one of the absent sequences 9R (RRRRRNWMWC), and its scrambled version 9S1R (RRRRRWCMNW) are reported here. We refer to these peptides derived from nullomers as PolyArgNulloPs. A control PolyArgNulloP, 124R (RRRRRWFMHW), was also included. The lethal effects of 9R and 9S1R are mediated by mitochondrial impairment as demonstrated by increased ROS production, ATP depletion, cell growth inhibition, and ultimately cell death. These effects increase over time for cancer cells with a concomitant drop in IC-50 for breast and prostate cancer cells. This is in sharp contrast to the effects in normal cells, which show a decreased sensitivity to the NulloPs over time

    Phylogeny of the Ciliate Family Psilotrichidae (Protista, Ciliophora), a Curious and Poorly-Known Taxon, with Notes on Two Algae-Bearing Psilotrichids from Guam, USA

    Get PDF
    Background: The classification of the family Psilotrichidae, a curious group of ciliated protists with unique morphological and ontogenetic features, is ambiguous and poorly understood particularly due to the lack of molecular data. Hence, the systematic relationship between this group and other taxa in the subclass Hypotrichia remains unresolved. In this paper the morphology and phylogenetics of species from two genera of Psilotrichida are studied to shed new light on the phylogeny and species diversity of this group of ciliates. Results: The 18S rRNA gene sequences of species from two psilotrichid genera were obtained. In the phylogenetic trees, the available psilotrichid sequences are placed in a highly supported clade, justifying the establishment of the family Psilotrichidae. The morphology of two little-known species, packed with green algae, including a new species, Hemiholosticha kahli nov. spec., and Psilotrichides hawaiiensis Heber et al., 2018, is studied based on live observation, protargol impregnation, and scanning electron microscopy. Both species are easily recognized by their green coloration due to the intracellular algae, and a comprehensive discussion as to the possible roles of the intracellular algae is provided. Conclusions: The 18S rRNA gene phylogeny supports the morphological argument that Hemiholosticha, Psilotrichides and Urospinula belong to the same family, Psilotrichidae. However, the single-gene analysis, not surprisingly, does not resolve the deeper relationships of Psilotrichidae within the subclass Hypotrichia. Two littleknown psilotrichid genera with green algae were collected from the same puddle on the island of Guam, indicating a high species diversity and broader geographic distribution of this group of ciliates than previously supposed. Phylogenetic inferences from transcriptomic and/or genomic data will likely be necessary to better define the systematic position and evolution of the family Psilotrichidae. Further studies are also needed to clarify the role of the intracellular eyespot-bearing algae in these ciliates

    Structured Multiple Endosymbiosis of Bacteria and Archaea in a Ciliate from Marine Sulfidic Sediments: A Survival Mechanism in Low Oxygen, Sulfidic Sediments?

    Get PDF
    Marine micro-oxic to sulfidic environments are sites of intensive biogeochemical cycling and elemental sequestration, where prokaryotes are major driving forces mediating carbon, nitrogen, sulfur, phosphorus, and metal cycles, important from both biogeochemical and evolutionary perspectives. Associations between single-celled eukaryotes and bacteria and/or archaea are common in such habitats. Here we describe a ciliate common in the micro-oxic to anoxic, typically sulfidic, sediments of Santa Barbara Basin (CA, USA). The ciliate is 95% similar to Parduzcia orbis (18S rRNA). Transmission electron micrographs reveal clusters of at least three different endobiont types organized within membrane-bound sub-cellular regions. Catalyzed reporter deposition–fluorescent in situ hybridization and 16S rRNA clone libraries confirm the symbionts include up to two sulfate reducers (Desulfobulbaceae, Desulfobacteraceae), a methanogen (Methanobacteriales), and possibly a Bacteroidete (Cytophaga) and a Type I methanotroph, suggesting synergistic metabolisms in this environment. This case study is discussed in terms of implications to biogeochemistry, and benthic ecology

    A Pressure sensitive Mat for Measuring Contact pressure Distributions of Patients Lying on Hospital Beds

    Get PDF
    The authors describe a novel system for sensing and displaying the distribution of contact pressure caused by a patient\u27s lying on a hospital bed. The system includes a flexible, pressure sensitive mat, electronics to activate the mat, a small computer to process data, and a color video display. The present prototypes can sense pressure at 1,536 discrete locations in a rectangular grid of 24 x 64 nodes, each node representing an area of 4 cm2. The computer receives data from each node and displays the results as a false-color map, refreshable every 5 seconds. The pressure sensitive mat itself includes two orthogonal arrays of ribbon-like conductors, composed of silver coated nylon fabric, which are separated by insulating open cell foam rubber. The system monitors the electrical capacitance between selected pairs of horizontal and vertical conductors on opposite sides of the foam. The crossing points form pressure sensitive nodes. Increased contact pressure compresses the foam, thereby decreasing the distance between the conductors and increasing the capacitance. Node capacitance is determined by measuring the current through it from a voltage source. The outputs of the various nodes are scanned, normalized, and converted to pressures using the known compressive stressstrain relationship for the foam, and the data are then displayed as a false-color image of the pressure distribution
    • …
    corecore