2,654 research outputs found

    IRAS 11590-6452 in BHR 71 - a binary protostellar system?

    Get PDF
    New AAT near-infrared and SEST 12CO J=2-1 observations are combined with existing ISO mid-infrared and ATCA cm radio continuum observations to examine the protostellar content of the Bok globule BHR 71. Together with observations of Herbig-Haro objects, these data show: (1) Two protostellar sources, IRS1 and IRS2, with a separation of ~17 arcsec (3400 AU) are located within BHR 71. (2) Each protostar is driving its own molecular outflow. The outflow from IRS1 is much larger in extent, is more massive, and dominates the CO emission. (3) Both protostars are associated with Herbig-Haro objects and shock excited 2.122 micron H2 v=1-0S(1) emission, which coincide spatially with their CO outflows. (4) IRS1 is associated with cm continuum emission, with a flat or rising spectrum which is consistent with free-free emission, a signpost of protostellar origin.Comment: 12 pages, 2 figures (colour), accepted by ApJ Letters. See also http://cfa-www.harvard.edu/~bourke

    SMA CO(2-1) Observations of CG30: A Protostellar Binary System with a High-Velocity Quadrupolar Molecular Outflow

    Full text link
    We present interferometric observations in the 12CO (2-1) line and at 1.3 mm dust continuum of the low-mass protostellar binary system in the cometary globule CG30, using the Submillimeter Array. The dust continuum images resolve two compact sources (CG30N and CG30S), with a linear separation of ~8700 AU and total gas masses of ~1.4 and ~0.6 M_sun, respectively. With the CO images, we discover two high-velocity bipolar molecular outflows, driven by the two sources. The two outflows are nearly perpendicular to each other, showing a quadrupolar morphology. The northern bipolar outflow extends along the southeast (redshifted, with a velocity up to ~23 km/s) and northwest (blueshifted, velocity up to ~30 km/s) directions, while the southern pair has an orientation from southwest (blueshifted, velocity up to 13 km/s) to northeast (redshifted, velocity up to ~41 km/s). The outflow mass of the northern pair, driven by the higher mass source CG30N, is ~9 times larger than that of the southern pair. The discovery of the quadrupolar molecular outflow in the CG30 protobinary system, as well as the presence of other quadrupolar outflows associated with binary systems, demonstrate that the disks in (wide) binary systems are not necessarily co-aligned after fragmentation.Comment: 12 pages, 3 figures, to be published by ApJL in October 200

    The Spitzer c2d Survey Of Nearby Dense Cores. VII. Chemistry And Dynamics In L43

    Get PDF
    We present results from the Spitzer Space Telescope and molecular line observations of nine species toward the dark cloud L43. The Spitzer images and molecular line maps suggest that it has a starless core and a Class I protostar evolving in the same environment. CO depletion is seen in both sources, and DCO(+) lines are stronger toward the starless core. With a goal of testing the chemical characteristics from pre- to protostellar stages, we adopt an evolutionary chemical model to calculate the molecular abundances and compare with our observations. Among the different model parameters we tested, the best-fit model suggests a longer total timescale at the pre-protostellar stage, but with faster evolution at the later steps with higher densities.NSF AST-0307250, AST0607793NASA NNX07AJ72GNational Research Foundation of Korea (NRF) government (MEST) 2009-0062865KOSEF R012007- 000-20336-0Astronom

    Observations of Global and Local Infall in NGC 1333

    Full text link
    We report ``infall asymmetry'' in the HCO+^+ (1--0) and (3--2) lines toward NGC 1333, extended over ∼0.39pc2\sim 0.39 {\rm pc}^2, a larger extent than has been reported be fore, for any star-forming region. The infall asymmetry extends over a major portion of the star-forming complex, and is not limited to a single protostar, or to a single dense core, or to a single spectral line. It seems likely that the infall asymmetry represents inward motions, and that these motions are physically associated with the complex. Both blue-asymmetric and red-asymmetric lines are seen, but in both the (3--2) and (1--0) lines of HCO+^+ the vast majority of the asymmetric lines are blue, indicating inward motions. The (3--2) line, tracing denser gas, has the spectra with the strongest asymmetry and these spectra are associated with the protostars IRAS 4A and 4B, which most likely indicates a warm central source is affecting the line profiles. The (3--2) and (1--0) lines usually have the same sense of asymmetry in common positions, but their profiles differ significantly, and the (1--0) line appears to trace motions on much larger spatial scales than does the (3--2) line. Line profile models fit the spectra well, but do not strongly constrain their parameters. The mass accretion rate of the inward motions is of order 10−4^{-4} M⊙_\odot/yr, similar to the ratio of stellar mass to cluster age.Comment: 28 pages, 11 figures, 1 colour figur

    Abundant cyanopolyynes as a probe of infall in the Serpens South cluster-forming region

    Full text link
    We have detected bright HC7N J = 21-20 emission toward multiple locations in the Serpens South cluster-forming region using the K-Band Focal Plane Array at the Robert C. Byrd Green Bank Telescope. HC7N is seen primarily toward cold filamentary structures that have yet to form stars, largely avoiding the dense gas associated with small protostellar groups and the main central cluster of Serpens South. Where detected, the HC7N abundances are similar to those found in other nearby star forming regions. Toward some HC7N `clumps', we find consistent variations in the line centroids relative to NH3 (1,1) emission, as well as systematic increases in the HC7N non-thermal line widths, which we argue reveal infall motions onto dense filaments within Serpens South with minimum mass accretion rates of M ~ 2-5 M_sun Myr^-1. The relative abundance of NH3 to HC7N suggests that the HC7N is tracing gas that has been at densities n ~ 10^4 cm^-3, for timescales t < 1-2 x 10^5 yr. Since HC7N emission peaks are rarely co-located with those of either NH3 or continuum, it is likely that Serpens South is not particularly remarkable in its abundance of HC7N, but instead the serendipitous mapping of HC7N simultaneously with NH3 has allowed us to detect HC7N at low abundances in regions where it otherwise may not have been looked for. This result extends the known star-forming regions containing significant HC7N emission from typically quiescent regions, like the Taurus molecular cloud, to more complex, active environments.Comment: 19 pages, 13 figures, accepted to MNRAS. Version with full resolution figures available at http://www.dunlap.utoronto.ca/~friesen/Friesen_HC7N.pd

    The Spitzer c2d Survey of Nearby Dense Cores. IX. Discovery of a Very Low Luminosity Object Driving a Molecular Outflow in the Dense Core L673-7

    Full text link
    We present new infrared, submillimeter, and millimeter observations of the dense core L673-7 and report the discovery of a low-luminosity, embedded Class 0 protostar driving a molecular outflow. L673-7 is seen in absorption against the mid-infrared background in 5.8, 8, and 24 micron Spitzer images, allowing for a derivation of the column density profile and total enclosed mass of L673-7, independent of dust temperature assumptions. Estimates of the core mass from these absorption profiles range from 0.2-4.5 solar masses. Millimeter continuum emission indicates a mass of about 2 solar masses, both from a direct calculation assuming isothermal dust and from dust radiative transfer models constrained by the millimeter observations. We use dust radiative transfer models to constrain the internal luminosity of L673-7, defined to be the luminosity of the central source and excluding the luminosity from external heating, to be 0.01-0.045 solar luminosities, with 0.04 solar luminosities the most likely value. L673-7 is thus classified as a very low luminosity object (VeLLO), and is among the lowest luminosity VeLLOs yet studied. We calculate the kinematic and dynamic properties of the molecular outflow in the standard manner, and we show that the expected accretion luminosity based on these outflow properties is greater than or equal to 0.36 solar luminosities. The discrepancy between this expected accretion luminosity and the internal luminosity derived from dust radiative transfer models indicates that the current accretion rate is much lower than the average rate over the lifetime of the outflow. Although the protostar embedded within L673-7 is consistent with currently being substellar, it is unlikely to remain as such given the substantial mass reservoir remaining in the core.Comment: 19 pages, 14 figures. Accepted by Ap
    • …
    corecore