39 research outputs found

    Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.

    Get PDF
    Lympho-myeloid restricted early thymic progenitors (ETPs) are postulated to be the cell of origin for ETP leukemias, a therapy-resistant leukemia associated with frequent co-occurrence of EZH2 and RUNX1 inactivating mutations, and constitutively activating signaling pathway mutations. In a mouse model, we demonstrate that Ezh2 and Runx1 inactivation targeted to early lymphoid progenitors causes a marked expansion of pre-leukemic ETPs, showing transcriptional signatures characteristic of ETP leukemia. Addition of a RAS-signaling pathway mutation (Flt3-ITD) results in an aggressive leukemia co-expressing myeloid and lymphoid genes, which can be established and propagated in vivo by the expanded ETPs. Both mouse and human ETP leukemias show sensitivity to BET inhibition in vitro and in vivo, which reverses aberrant gene expression induced by Ezh2 inactivation

    The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential

    Get PDF
    The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus. © 2012 Nature America, Inc. All rights reserved

    Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors

    Get PDF
    The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs

    MyD88-dependent autoimmune disease in Lyn-deficient mice.

    No full text
    Recent evidence suggests that systemic autoimmune disease depends on signals from TLR ligands, but little is known about how TLR-dependent pathways lead to the loss of self tolerance in vivo. To address this, we have examined the role of TLR signaling in Lyn-deficient mice, which develop an autoimmune disease similar to SLE. We found that absence of the TLR signaling adaptor molecule MyD88 suppresses plasma cell differentiation of switched and unswitched B cells, and prevents the generation of antinuclear IgG antibodies and glomerulonephritis. In mixed chimeras the increased IgM and IgG antibody secretion in Lyn-deficient mice is at least partially due to B cell-independent effects of Lyn. We now show that MyD88 deficiency blocks the expansion and activation of DC in which Lyn is also normally expressed, and prevents the hypersecretion of proinflammatory cytokines IL-6 and IL-12 by Lyn-deficient DC. These findings further highlight the important role of TLR-dependent signals in both lymphocyte activation and autoimmune pathogenesis.

    MyD88-dependent autoimmune disease in Lyn-deficient mice

    No full text
    Recent evidence suggests that systemic autoimmune disease depends on signals from TLR ligands, but little is known about how TLR-dependent pathways lead to the loss of self tolerance in vivo. To address this, we have examined the role of TLR signaling in Lyn-deficient mice, which develop an autoimmune disease similar to SLE. We found that absence of the TLR signaling adaptor molecule MyD88 suppresses plasma cell differentiation of switched and unswitched B cells, and prevents the generation of antinuclear IgG antibodies and glomerulonephritis. In mixed chimeras the increased IgM and IgG antibody secretion in Lyn-deficient mice is at least partially due to B cell-independent effects of Lyn. We now show that MyD88 deficiency blocks the expansion and activation of DC in which Lyn is also normally expressed, and prevents the hypersecretion of proinflammatory cytokines IL-6 and IL-12 by Lyn-deficient DC. These findings further highlight the important role of TLR-dependent signals in both lymphocyte activation and autoimmune pathogenesis

    Hyper IgE in New Zealand black mice due to a dominant-negative CD23 mutation.

    No full text
    Immunoglobulin E (IgE) plays a critical role in both resistance to parasitic infection and allergy to environmental antigens. The IgE response is in turn regulated by the B-cell co-receptor CD23, and CD23-deficient mice show exaggerated IgE responses and airway hyper-responsiveness. In this report, we show that New Zealand black (NZB) mice express a variant CD23 allele, with mutations in both the C-lectin-binding domain and stalk region, which fails to bind IgE at high affinity and has reduced expression on the cell surface. Expression of the variant CD23 chain interferes with trimerisation of the receptor and has a dominant-negative effect leading to reduced IgE binding in crosses between NZB and other strains. Genetic mapping shows that the variant CD23 leads to an exaggerated primary IgE response, which is independent of other strain-specific effects. These results suggest that NZB mice or mice carrying the variant allele will be useful models for studying both allergy and quantitative traits associated with atopy. The exaggerated IgE response provides an explanation for the natural resistance of NZB mice to parasitic infection by Leishmania

    Spontaneous class switching and B cell hyperactivity increase autoimmunity against intracellular self antigen in Lyn-deficient mice.

    No full text
    IgG autoantibodies cause pathology due to their ability to bind self antigens. However, the extent to which the initial B cell activation and isotype switching is antigen-driven is unclear and it has been widely proposed that intrinsic B cell hyperactivity may be a contributing factor. To explore this issue we generated mice with B cell hyperactivity secondary to deficiency in the src kinase Lyn that also expressed a gene-targeted anti-hen egg lysozyme Ig construct (VDJkappa) capable of class switching to all isotypes. The B cell hyperactivity caused spontaneous hypersecretion of antibodies and class switching to IgM, IgA, IgG1 and IgG3 isotypes in the absence of self antigen, and this persisted as an autoimmune phenomenon in the presence of intracellularly expressed hen egg lysozyme. Exaggerated class switching was also unaffected by antigen in vitro. These findings show that systemic high-avidity intracellular self antigens do not induce self tolerance in the face of B cell hyperactivity. Under these circumstances, spontaneous activation of hyperactive B cells leads to isotype switching and the development of high titres of IgG autoantibodies against intracellular proteins

    Gastro-Intestinal Disorders and Micronutrient Deficiencies following Oncologic Esophagectomy and Gastrectomy.

    No full text
    Primary surgical indications for the esophagus and stomach mainly involve cancer surgeries. In recent years, significant progress has been made in the field of esogastric surgery, driven by advancements in surgical techniques and improvements in perioperative care. The rate of resectability has increased, and surgical strategies have evolved to encompass a broader patient population. However, despite a reduction in postoperative mortality and morbidity, malnutrition remains a significant challenge after surgery, leading to weight loss, muscle mass reduction, and deficiencies in essential nutrients due to digestive complications. Malnutrition worsens quality of life and increases the risk of tumor recurrence, significantly affecting prognosis. Nevertheless, the nutritional consequences following surgery are frequently overlooked, mainly due to a lack of awareness regarding their long-term effects on patients who have undergone digestive surgery, extending beyond six months. Micronutrient deficiencies are frequently observed following both partial and total gastrectomy, as anticipated. Surprisingly, these deficiencies appear to be similarly prevalent in patients who have undergone esophagectomy with iron, vitamins A, B1, B12, D, and E deficiencies commonly observed in up to 78.3% of the patients. Recognizing the distinct consequences associated with each type of intervention underscores the importance of implementing preventive measures, early detection, and prompt management

    GATA3 is redundant for maintenance and self-renewal of hematopoietic stem cells.

    No full text
    GATA3 has been identified as a master regulator of T helper cells, as well as being important for early thymic progenitors and T-cell commitment. However, Gata3 expression initiates already at the hematopoietic stem cell (HSC) level, implicating a potential role also in the regulation of HSCs. Herein we used a conditional Gata3 knockout strategy in which Gata3 expression was completely deleted from the earliest stage of embryonic hematopoietic development after emergence of HSCs from hemogenic endothelium. Through a detailed analysis of HSCs at the phenotypic and functional level, we demonstrate that steady-state levels of HSCs are normal in Gata3(fl/fl)Vav-Cre(tg/+) mice. Moreover, through long-term primary and secondary transplantation experiments, we also unequivocally demonstrate that Gata3 has a redundant role in post-transplantation HSC self-renewal

    CD4 T cell-dependent autoimmunity against a melanocyte neoantigen induces spontaneous vitiligo and depends upon Fas-Fas ligand interactions.

    No full text
    Better understanding of tolerance and autoimmunity toward melanocyte-specific Ags is needed to develop effective treatment for vitiligo and malignant melanoma; yet, a systematic assessment of these mechanisms has been hampered by the difficulty in tracking autoreactive T cells. To address this issue, we have generated transgenic mice that express hen egg lysozyme as a melanocyte-specific neoantigen. By crossing these animals to a hen egg lysozyme-specific CD4 TCR transgenic line we have been able to track autoreactive CD4+ T cells from their development in the thymus to their involvement in spontaneous autoimmune disease with striking similarity to human vitiligo vulgaris and Vogt-Koyanagi-Harada syndrome. Our findings show that CD4-dependent destruction of melanocytes is partially inhibited by blocking Fas-Fas ligand interactions and also highlights the importance of local control of autoimmunity, as vitiligo remains patchy and never proceeds to confluence even when Ag and autoreactive CD4+ T cells are abundant. Immune therapy to enhance or suppress melanocyte-specific T cells can be directed at a series of semiredundant pathways involving tolerance and cell death
    corecore