3 research outputs found

    Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae

    Get PDF
    A high affinity glutathione transporter has been identified, cloned, and characterized from the yeast Saccharomyces cerevisiae. This transporter, Hgt1p, represents the first high affinity glutathione transporter to be described from any system so far. The strategy for the identification involved investigating candidate glutathione transporters from the yeast genome sequence project followed by genetic and physiological investigations. This approach revealed HGT1 (open reading frame YJL212c) as encoding a high affinity glutathione transporter. Yeast strains deleted in HGT1 did not show any detectable plasma membrane glutathione transport, and hgt1Δ disruptants were non-viable in a glutathione biosynthetic mutant (gsh1Δ) background. The glutathione repressible transport activity observed in wild type cells was also absent in the hgt1Δ strains. The transporter was cloned and kinetic studies indicated that Hgt1p had a high affinity for glutathione (Km = 54 μM)) and was not sensitive to competition by amino acids, dipeptides, or other tripeptides. Significant inhibition was observed, however, with oxidized glutathione and glutathione conjugates. The transporter reveals a novel class of transporters that has homologues in other yeasts and plants but with no apparent homologues in either Escherichia coli or in higher eukaryotes other than plants

    Multiple cis-regulatory elements and the yeast sulphur regulatory network are required for the regulation of the yeast glutathione transporter, Hgt1p

    No full text
    HGT1 encodes a high-affinity glutathione transporter in the yeast Saccharomyces cerevisiae that is induced under sulphur limitation. The present work demonstrates that repression by organic sulphur sources is under the control of the classic sulphur regulatory network, as seen by the absence of expression in a met4Δ background. Cysteine appeared to be the principal regulatory molecule, since elevated levels were seen in str4Δ strains (deficient in cysteine biosynthesis) that could be repressed by elevated levels of cysteine, but not by methionine or glutathione. Investigations into cis-regulatory elements revealed that the previously described motif, a 9-bp cis element, CCGCCACAC, located at the -356 to -364 region of the promoter could in fact be refined to a 7-bp CGCCACA motif that is also repeated at -333 to -340. The second copy of this motif was essential for activity, since mutations in the core region of the second copy completely abolished activity and regulation by sulphur sources. Activity, but not regulation, could be restored by reintroducing an additional copy upstream of the first copy. A third region, GCCGTCTGCAAGGCA, conserved in the HGT1 promoters of the different Saccharomyces spp, was observed at -300 to -285 but, while mutations in this region did not lead to any loss in repression, the basal and induced levels were significantly increased. In contrast to a previous report, no evidence was found for regulation by the VDE endonuclease. The strong repression at the transport level by glutathione seen in strains overexpressing HGT1 was due to a glutathione-dependent toxicity in these cells

    Glutathione depletion leads to delayed growth stasis in Saccharomyces cerevisiae: evidence of a partially overlapping role for thioredoxin

    No full text
    Disruption of the first enzyme of glutathione biosynthesis in both Saccharomyces cerevisiae and Schizosaccharomyces pombe leads to a glutathione auxotrophy phenotype on plates. However, growth experiments in liquid medium revealed that the cessation of growth resulting from glutathione depletion in these yeasts is very delayed in S.cerevisiae compared to S.pombe. Glutathione metabolism was investigated to understand this delayed growth stasis in S.cerevisiae. The assimilation of reduced and oxidized glutathione, the intracellular storage pools of glutathione and the turnover of this compound were investigated and found to be similar in both yeasts. A possible overlapping role of intracellular thioredoxin in causing delayed stasis was studied. Yeast thioredoxin was overexpressed in S.cerevisiae and was found to partially relieve the dependence of S.cerevisiae glutathione auxotrophs on extracellular glutathione in glucose-grown cultures, as well as in glycerol-grown cultures where conditions of increased glutathione requirements exists in the cell. By partially, but not completely, compensating for glutathione deficiency in this yeast, thioredoxin thus appeared to be the major factor that was causing the delayed growth stasis following glutathione depletion in this yeast
    corecore