52 research outputs found

    Effects of Forest Fire on Young-of-the-year Northern Pike, Esox lucius, in the Northwest Territories

    Get PDF
    In 1998, a forest fire burned 58% of the forested shoreline surrounding Tibbitt Lake, Northwest Territories, including riparian vegetation used by Northern Pike (Esox lucius) as spawning habitat. This presented an opportunity to investigate the effects that habitat disturbance from a natural forest fire had on young-of-the-year (Y-O-Y) Northern Pike. Pike fry were collected from three burned and three unburned sites around Tibbitt Lake in 1999 (the first post-fire spawning season) and again in 2001. Differences in size and relative abundance were evaluated between sites. Y-O-Y Northern Pike were significantly larger at the unburned sites (P<0.01) and the relative abundance of Y-O-Y Northern Pike increased significantly at burned sites (alpha=0.1; P<0.07) following re-vegetation two years post fire. These differences may be due to fire-induced changes in physical habitat or food availability. Forest fires decrease the density of riparian vegetation, which likely provides better spawning and rearing habitat for Northern Pike in the long-term.En 1998, un feu de forĂȘt a brĂ»lĂ© 58% de la rive boisĂ©e entourant le lac Tibbitt, situĂ© dans les Territoires du Nord-Ouest, y compris la vĂ©gĂ©tation riveraine utilisĂ© par le grand brochet (Esox lucius) comme habitat de fraie. Cet Ă©vĂ©nement a prĂ©sentĂ© une occasion pour Ă©tudier les effets causĂ©s par un feu de foret sur l'habitat de jeunes de l'annĂ©e du grand brochet. Les jeunes brochets ont Ă©tĂ© recueillis sur trois sites brĂ»lĂ©es et trois sites non brĂ»lĂ©s autour du lac Tibbitt en 1999 (la premiĂšre annĂ©e de fraie aprĂšs le feu de forĂȘt) et Ă  nouveau en 2001. La diffĂ©rence de grandeur et l'abondance relative des poissons ont Ă©tĂ© analysĂ©s entre les diffĂ©rents sites. Les jeunes grands brochets aux sites non-atteints par le feu Ă©taient considĂ©rablement plus grands (P < 0,01) que ceux aux sites brulĂ©s. Les sites brulĂ©s, subissant une rapide revĂ©gĂ©tation dans les deux annĂ©es aprĂšs le feu, ont augmentĂ© en abondance relative de jeunes grands brochets (alpha = 0,1, P < 0,07). Ces diffĂ©rences peuvent ĂȘtre dues aux changements induits par le feu sur l'aspect physique de l'habitat ou sur la disponibilitĂ© de nourriture. Les incendies de forĂȘt rĂ©duisent la densitĂ© de la vĂ©gĂ©tation riveraine, qui fournit probablement de meilleure habitat de fraie et d'alevinage pour le grand brochet Ă  long terme

    Optimizing quantum gates towards the scale of logical qubits

    Full text link
    A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two major challenges that could become fundamental roadblocks are manufacturing high performance quantum hardware and engineering a control system that can reach its performance limits. The control challenge of scaling quantum gates from small to large processors without degrading performance often maps to non-convex, high-constraint, and time-dependent control optimization over an exponentially expanding configuration space. Here we report on a control optimization strategy that can scalably overcome the complexity of such problems. We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunable superconducting qubits to execute single- and two-qubit gates while mitigating computational errors. When combined with a comprehensive model of physical errors across our processor, the strategy suppresses physical error rates by ∌3.7×\sim3.7\times compared with the case of no optimization. Furthermore, it is projected to achieve a similar performance advantage on a distance-23 surface code logical qubit with 1057 physical qubits. Our control optimization strategy solves a generic scaling challenge in a way that can be adapted to other quantum algorithms, operations, and computing architectures

    Live imaging of SARS-CoV-2 infection in mice reveals neutralizing antibodies require Fc function for optimal efficacy

    Get PDF
    Neutralizing antibodies (NAbs) are effective in treating COVID-19 but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment in prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. We visualized sequential spread of virus from the nasal cavity to the lungs followed by systemic spread to various organs including the brain, culminating in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days of infection. In addition to direct neutralization, in vivo efficacy required Fc effector functions of NAbs, with contributions from monocytes, neutrophils and natural killer cells, to dampen inflammatory responses and limit immunopathology. Thus, our study highlights the requirement of both Fab and Fc effector functions for an optimal in vivo efficacy afforded by NAbs against SARS-CoV-2

    Stable Quantum-Correlated Many Body States through Engineered Dissipation

    Full text link
    Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors

    Phase transition in Random Circuit Sampling

    Full text link
    Quantum computers hold the promise of executing tasks beyond the capability of classical computers. Noise competes with coherent evolution and destroys long-range correlations, making it an outstanding challenge to fully leverage the computation power of near-term quantum processors. We report Random Circuit Sampling (RCS) experiments where we identify distinct phases driven by the interplay between quantum dynamics and noise. Using cross-entropy benchmarking, we observe phase boundaries which can define the computational complexity of noisy quantum evolution. We conclude by presenting an RCS experiment with 70 qubits at 24 cycles. We estimate the computational cost against improved classical methods and demonstrate that our experiment is beyond the capabilities of existing classical supercomputers

    Readout of a quantum processor with high dynamic range Josephson parametric amplifiers

    Full text link
    We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 Ω\Omega environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimate of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs.Comment: 9 pages, 8 figure

    Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation

    Full text link
    Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target signal-to-noise ratio in the shortest possible time. However, experiments have shown that when the average resonator photon number exceeds a certain threshold, the qubit is excited out of its computational subspace, which we refer to as a measurement-induced state transition. These transitions degrade readout fidelity, and constitute leakage which precludes further operation of the qubit in, for example, error correction. Here we study these transitions using a transmon qubit by experimentally measuring their dependence on qubit frequency, average photon number, and qubit state, in the regime where the resonator frequency is lower than the qubit frequency. We observe signatures of resonant transitions between levels in the coupled qubit-resonator system that exhibit noisy behavior when measured repeatedly in time. We provide a semi-classical model of these transitions based on the rotating wave approximation and use it to predict the onset of state transitions in our experiments. Our results suggest the transmon is excited to levels near the top of its cosine potential following a state transition, where the charge dispersion of higher transmon levels explains the observed noisy behavior of state transitions. Moreover, occupation in these higher energy levels poses a major challenge for fast qubit reset

    Overcoming leakage in scalable quantum error correction

    Full text link
    Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC). In a QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of logical error with scale, challenging the feasibility of QEC as a path towards fault-tolerant quantum computation. Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than 1×10−31 \times 10^{-3} throughout the entire device. The leakage removal process itself efficiently returns leakage population back to the computational basis, and adding it to a code circuit prevents leakage from inducing correlated error across cycles, restoring a fundamental assumption of QEC. With this demonstration that leakage can be contained, we resolve a key challenge for practical QEC at scale.Comment: Main text: 7 pages, 5 figure
    • 

    corecore