16 research outputs found

    Design Status of the Beam Switchyard for ESSnuSB

    No full text
    International audienceThe ESSnuSB project, recently granted by the EU H2020 framework programme for a 4-year design study, proposes to use the proton linac (2 GeV, 5 MW) of the European Spallation Source (ESS) currently in construction in Lund (Sweden) to deliver a neutrino super beam. One of the work packages of this design study is dedicated to the primary proton beam-line completing the linac. It will mainly consist of an accumulator ring to compress the 2.86 ms long beam pulse to 1.32 μs and of a switchyard to distribute the protons onto a 4-target station. Dipoles, steerers, quadrupoles, collimators and several diagnostics will compose the switchyard to ensure the protons to hit the target with desired characteristics. This paper presents the objectives of this work package and the design status of this switchyard system

    IPHC emittance-meters: design and development

    No full text
    International audienceThe Institut Pluridisciplinaire Hubert Curien (IPHC) of Strasbourg, which celebrates its 15th year in 2021, is composed of four departments. Each of these departments comes from a different scientific horizon such as eco-physiology, chemistry, subatomic research and medical imaging. IPHC was created with the ambition of having different competences to develop high-level multidisciplinary programs with the basis of scientific instrumentation. Beam diagnostics is one of the main fields that has been intensively investigated during all these years within the team of the Instrumentation of Accelerators. This paper focuses on one of its major achievements, the Allison emittance-meter, developed in the framework of SPIRAL2, MYRRHA and FAIR projects

    Atomic Beam Merging and Suppression of Alkali Contaminants in Multi Body High Power Targets: Design and Test of Target and Ion Source Prototypes at ISOLDE

    No full text
    The next generation of high power ISOL-facilities will deliver intense and pure radioactive ion beams. Two key issues of developments mandatory for the forthcoming generation of ISOL target-ion source units are assessed and demonstrated in this thesis. The design and production of target and ion-source prototypes is described and dedicated measurements at ISOLDE-CERN of their radioisotope yields are analyzed. The purity of short lived or rare radioisotopes suffer from isobaric contaminants, notably alkalis which are highly volatile and easily ionized elements. Therefore, relying on their chemical nature, temperature controlled transfer lines were equipped with a tube of quartz that aimed at trapping these unwanted elements before they reached the ion source. The successful application yields high alkali-suppression factors for several elements (ie: 80, 82mRb, 126, 142Cs, 8Li, 46K, 25Na, 114In, 77Ga, 95, 96Sr) for quartz temperatures between 300ºC and 1100ºC. The enthalpies of adsorption on quartz were measured for Rubidium and Caesium. The enthalpies ΔHad (Rb) = -242 ± 20 kJ/mol and ΔHad (Cs) = -145 ± 20 kJ/mol are in good agreement with those obtained by isothermal chromatography. For proton beam power of the order of 100 kW such as foreseen in the EURISOL-DS project for direct ISOL targets, multi-body target units connected to a single ion-source are proposed. The so-called “Bi-Valve” target prototype aims to benchm ark the engineering tools required to simulate effusion related decay losses and to validate the multi body target concept. Four isotopes were investigated online: 34,35Ar and 18,19Ne. The efficiency of the double line merging was found to be in the range of 75 to 95%. The diffusion (analytical) and effusion (Monte Carlo) code RIBO provided the profile of the effusion distribution of the isotopes within the Bi-Valve unit for the different operation modes. A mathematical expression for the probability, p(t) that an isotope diffuses and effuses through the system is proposed. The simulated release efficiencies were in agreement with the experimental ones for 34, 35Ar at 95% thus opening the way to the engineering of multi body target units for future facilities

    The ESS neutrino facility for CP violation discovery

    No full text
    International audienceThe comparatively large value of the neutrino mixing angle θ (13) measured in 2012 by neutrino reactor experiments has opened the possibility to observe for the first time CP violation in the leptonic sector. The measured value of θ (13) also privileges the 2nd oscillation maximum for the discovery of CP violation instead of the usually used 1st oscillation maximum. The sensitivity at the 2nd oscillation maximum is about three times higher than at the 1st oscillation maximum implying a significantly lower sensitivity to systematic errors. Measuring at the 2nd oscillation maximum necessitates a very intense neutrino beam with the appropriate energy. The world’s most intense pulsed spallation neutron source, the European Spallation Source, has a proton linac with 5 MW power and 2 GeV energy. This linac also has the potential to become the proton driver of the world’s most intense neutrino beam with very high potential for the discovery of neutrino CP violation. The physics performance of that neutrino Super Beam in conjunction with a megaton Water Cherenkov neutrino detector installed ca 1000 m down in a mine at a distance of about 500 km from ESS has been evaluated. In addition, the use of such a detector will make it possible to extent the physics program to proton decay, atmospheric neutrinos and astrophysics searches. The ESS proton linac upgrade, the accumulator ring needed for proton pulse compression, the target station optimization and the physics potential are described. In addition to the production of neutrinos, this facility will also be a copious source of muons which could be used to feed a low energy nuSTORM facility, a future neutrino factory or a muon collider. The ESS linac, under construction, will reach full operation at 5 MW by 2023 after which the upgrades for the neutrino facility could start

    The European Spallation Source Neutrino Super Beam Design Study

    No full text
    International audienceThe discovery of oscillations and the latest progress in neutrino physics will make possible to observe for the first time a possible CP violation at the level of leptons. This will help to understand the disappearance of antimatter in the Universe. The ESSnuSB* project proposes to use the proton linac of the ESS currently under construction to produce a very intense neutrino Super Beam, in parallel with the spallation neutron production. The ESS linac is expected to deliver 5 MW average power, 2 GeV proton beam, with a rate of 14 Hz and pulse duration of 2.86 ms. By doubling the pulse rate, 5 MW power more can be provided for the production of the neutrino beam. In order to shorten the proton pulse duration to few μs requested by the neutrino facility, an accumulation ring is needed, imposing the use and acceleration of H⁻ instead of protons in the linac. The neutrino facility also needs a separate target station with a different design than the one of the neutron facility. On top of the target, a hadron magnetic collecting device is needed in order to focus the emerging hadrons from the target and obtain an intense neutrino beam directed towards the neutrino detector

    The ESSnuSB Target Station

    No full text
    International audienceThe ESSνSB project, recently granted by the EU H₂020 programme for a 4-year design study, proposes to use the protons produced by the linac (2 GeV, 5 MW) of the European Spallation Source (ESS) currently in construction in Lund (Sweden) to deliver a neutrino super beam. It follows the studies made by the FP7 Design Study EUROν[1] (2008-2012), regarding future neutrino facilities. The primary proton beam line completing the linear accelerator will consist of one or several accumulator rings and a proton beam switchyard. The secondary beam line producing neutrinos will consist of a four-horn/target station, a decay tunnel and a beam dump. A challenging component of this project is the enormous target heat-load generated by the 5 MW proton beam. In order to reduce this heat-load there will be four targets, which will be hit in sequence by the compressed proton pulses, thereby reducing the beam power on each target to 1.25 MW. Following the EUROν studies, a packed bed of titanium spheres cooled with helium gas has become the baseline design for a Super Beam based on a 2-5 GeV proton beam with a power of up to 1 MW per target, with other targets being considered for comparison. The hadron collection will be performed by four hadron collectors (magnetic horns), one for each target. Each of these target/hadron-collector assemblies will receive proton pulses three times more frequently than in present projects, and by an average beam power of 1.25 MW, which is twice as high as in present neutrino projects. The feasibility of the target/horn station for the ESSνSB project is discussed here

    Optimized Beam Optics Design of the MINERVA/MYRRHA Superconducting Proton Linac

    No full text
    International audienceThe MYRRHA design for an accelerator driven system (ADS) is based on a 600 MeV superconducting proton linac. The first stage towards its realization is called MINERVA and was approved in 2018 to be constructed by SCK•CEN in Belgium. This 100 MeV linac, will serve as technology demonstrator for the high MYRRHA reliability requirements as well as driver for two independent target stations, one for radio-isotope research and production of radio-isotopes for medical purposes, the other one for fusion materials research. This contribution gives an overview of the latest accelerator machine physics design with a focus on the optimized medium (17 MeV) and high energy (100 MeV) beam transfer lines

    Design of a Beamline From a TR24 Cyclotron for Biological Tissues Irradiation

    No full text
    International audienceThe PRECy project foresees the use of a 16-25 MeV energy proton beam produced by the recently installed TR24 cyclotron, CYRCé, at the Institut Pluridisciplinaire Hubert Curien (IPHC) of Strasbourg for biological tissues irradiation. One of the exit ports of the cyclotron will be used for this application along with a combination magnet. The platform will consist of up to 3 or 5 experimental stations linked to beamlines in a dedicated area next to the cyclotron vault. One of the beamlines will receive proton beams of a few cm diameter at intensities up to 100 nA. The status of the design of this first beam line is presented
    corecore