4 research outputs found

    Dipterocarpus tuberculatus as a promising anti-obesity treatment in Lep knockout mice

    Get PDF
    IntroductionThe therapeutic effects and mechanisms of Dipterocarpus tuberculatus (D. tuberculatus) extracts have been examined concerning inflammation, photoaging, and gastritis; however, their effect on obesity is still being investigated.MethodsWe administered a methanol extract of D. tuberculatus (MED) orally to Lep knockout (KO) mice for 4 weeks to investigate the therapeutic effects on obesity, weight gain, fat accumulation, lipid metabolism, inflammatory response, and β-oxidation.ResultsIn Lep KO mice, MED significantly reduced weight gains, food intake, and total cholesterol and glyceride levels. Similar reductions in fat weights and adipocyte sizes were also observed. Furthermore, MED treatment reduced liver weight, lipid droplet numbers, the expressions of adipogenesis and lipogenesis-related genes, and the expressions of lipolysis regulators in liver tissues. Moreover, the iNOS-mediated COX-2 induction pathway, the inflammasome pathway, and inflammatory cytokine levels were reduced, but β-oxidation was increased, in the livers of MED-treated Lep KO mice.ConclusionThe results of this study suggest that MED ameliorates obesity and has considerable potential as an anti-obesity treatment

    Protective Effects of Dipterocarpus tuberculatus in Blue Light-Induced Macular Degeneration in A2E-Laden ARPE19 Cells and Retina of Balb/c Mice

    No full text
    Natural products with significant antioxidant activity have been receiving attention as one of the treatment strategies to prevent age-related macular degeneration (AMD). Reactive oxygen intermediates (ROI) including oxo-N-retinylidene-N-retinylethanolamine (oxo-A2E) and singlet oxygen-induced damage, are believed to be one of the major causes of the development of AMD. To investigate the therapeutic effects of methanol extracts of Dipterocarpus tuberculatus Roxb. (MED) against blue light (BL)-caused macular degeneration, alterations in the antioxidant activity, apoptosis pathway, neovascularization, inflammatory response, and retinal degeneration were analyzed in A2E-laden ARPE19 cells and Balb/c mice after exposure of BL. Seven bioactive components, including 2α-hydroxyursolic acid, ε-viniferin, asiatic acid, bergenin, ellagic acid, gallic acid and oleanolic acid, were detected in MED. MED exhibited high DPPH and ABTS free radical scavenging activity. BL-induced increases in intracellular reactive oxygen species (ROS) production and nitric oxide (NO) concentration were suppressed by MED treatment. A significant recovery of antioxidant capacity by an increase in superoxide dismutase enzyme (SOD) activity, SOD expression levels, and nuclear factor erythroid 2–related factor 2 (NRF2) expression were detected as results of MED treatment effects. The activation of the apoptosis pathway, the expression of neovascular proteins, cyclooxygenase-2 (COX-2)-induced inducible nitric oxide synthase (iNOS) mediated pathway, inflammasome activation, and expression of inflammatory cytokines was remarkably inhibited in the MED treated group compared to the Vehicle-treated group in the AMD cell model. Furthermore, MED displayed protective effects in BL-induced retinal degeneration through improvement in the thickness of the whole retina, outer nuclear layer (ONL), inner nuclear layer (INL), and photoreceptor layer (PL) in Balb/c mice. Taken together, these results indicate that MED exhibits protective effects in BL-induced retinal degeneration and has the potential in the future to be developed as a treatment option for dry AMD with atrophy of retinal pigment epithelial (RPE) cells

    Protective Effects of <i>Dipterocarpus tuberculatus</i> in Blue Light-Induced Macular Degeneration in A2E-Laden ARPE19 Cells and Retina of Balb/c Mice

    No full text
    Natural products with significant antioxidant activity have been receiving attention as one of the treatment strategies to prevent age-related macular degeneration (AMD). Reactive oxygen intermediates (ROI) including oxo-N-retinylidene-N-retinylethanolamine (oxo-A2E) and singlet oxygen-induced damage, are believed to be one of the major causes of the development of AMD. To investigate the therapeutic effects of methanol extracts of Dipterocarpus tuberculatus Roxb. (MED) against blue light (BL)-caused macular degeneration, alterations in the antioxidant activity, apoptosis pathway, neovascularization, inflammatory response, and retinal degeneration were analyzed in A2E-laden ARPE19 cells and Balb/c mice after exposure of BL. Seven bioactive components, including 2α-hydroxyursolic acid, ε-viniferin, asiatic acid, bergenin, ellagic acid, gallic acid and oleanolic acid, were detected in MED. MED exhibited high DPPH and ABTS free radical scavenging activity. BL-induced increases in intracellular reactive oxygen species (ROS) production and nitric oxide (NO) concentration were suppressed by MED treatment. A significant recovery of antioxidant capacity by an increase in superoxide dismutase enzyme (SOD) activity, SOD expression levels, and nuclear factor erythroid 2–related factor 2 (NRF2) expression were detected as results of MED treatment effects. The activation of the apoptosis pathway, the expression of neovascular proteins, cyclooxygenase-2 (COX-2)-induced inducible nitric oxide synthase (iNOS) mediated pathway, inflammasome activation, and expression of inflammatory cytokines was remarkably inhibited in the MED treated group compared to the Vehicle-treated group in the AMD cell model. Furthermore, MED displayed protective effects in BL-induced retinal degeneration through improvement in the thickness of the whole retina, outer nuclear layer (ONL), inner nuclear layer (INL), and photoreceptor layer (PL) in Balb/c mice. Taken together, these results indicate that MED exhibits protective effects in BL-induced retinal degeneration and has the potential in the future to be developed as a treatment option for dry AMD with atrophy of retinal pigment epithelial (RPE) cells

    Therapeutic Effects of Dipterocarpus tuberculatus with High Antioxidative Activity Against UV-Induced Photoaging of NHDF Cells and Nude Mice

    No full text
    To investigate the therapeutic effects of methanol extracts of Dipterocarpus tuberculatus Roxb. (MED) against UV-induced photoaging, we assessed for alterations in the antioxidant activity, anti-apoptotic effects, ECM modulation, skin appearances, and anti-inflammatory response in normal human dermal fibroblast (NHDF) cells and nude mice orally treated with MED. High levels of tannin content and high free radical scavenging activity to DPPH were determined in MED, while seven active components, namely, gallic acid, bergenin, ellagic acid, ε-viniferin, asiatic acid, oleanolic acid, and 2α-hydroxyursolic acid, were identified using LC–MS analyses. UV-induced alterations in the NO concentration, SOD activity, and Nrf2 expression were remarkably recovered in MED-treated NHDF cells. Moreover, the decreased number of apoptotic cells and G2/M phase arrest were observed in the UV + MED-treated groups. Similar recoveries were detected for β-galactosidase, MMP-2/9 expression, and intracellular elastase activity. Furthermore, MED treatment induced suppression of the COX-2-induced iNOS mediated pathway, expression of inflammatory cytokines, and inflammasome activation in UV-radiated NHDF cells. The anti-photoaging effects observed in NHDF cells were subsequently evaluated and validated in UV + MED-treated nude mice through skin phenotypes and histopathological structure analyses. Taken together, these results indicate that MED exerts therapeutic effects against UV-induced photoaging and has the potential for future development as a treatment for photoaging
    corecore