39 research outputs found

    Interactions between Seagrass Complexity, Hydrodynamic Flow and Biomixing Alter Food Availability for Associated Filter-Feeding Organisms

    Get PDF
    Seagrass shoots interact with hydrodynamic forces and thereby a positively or negatively influence the survival of associated species. The modification of these forces indirectly alters the physical transport and flux of edible particles within seagrass meadows, which will influence the growth and survivorship of associated filter-feeding organisms. The present work contributes to gaining insight into the mechanisms controlling the availability of resources for filter feeders inhabiting seagrass canopies, both from physical (influenced by seagrass density and patchiness) and biological (regulated by filter feeder density) perspectives. A factorial experiment was conducted in a large racetrack flume, which combined changes in hydrodynamic conditions, chlorophyll a concentration in the water and food intake rate (FIR) in a model active filter-feeding organism (the cockle). Results showed that seagrass density and patchiness modified both hydrodynamic forces and availability of resources for filter feeders. Chlorophyll a water content decreased to 50% of the initial value when densities of both seagrass shoots and cockles were high. Also, filter feeder density controlled resource availability within seagrass patches, depending on its spatial position within the racetrack flume. Under high density of filter-feeding organisms, chlorophyll a levels were lower between patches. This suggests that the pumping activity of cockles (i.e. biomixing) is an emergent key factor affecting both resource availability and FIR for filter feeders in dense canopies. Applying our results to natural conditions, we suggest the existence of a direct correlation between habitat complexity (i.e. shoot density and degree of patchiness) and filter feeders density. Fragmented and low-density patches seem to offer both greater protection from hydrodynamic forces and higher resource availability. In denser patches, however, resources are allocated mostly within the canopy, which would benefit filter feeders if they occurred at low densities, but would be limiting when filter feeder were at high densities

    The Obliquity of HIP 67522 b: A 17 Myr Old Transiting Hot, Jupiter-sized Planet

    Get PDF
    HIP 67522 b is a 17 Myr old, close-in (P orb = 6.96 days), Jupiter-sized (R = 10 R ⊕) transiting planet orbiting a Sun-like star in the Sco-Cen OB association. We present our measurement of the system's projected orbital obliquity via two spectroscopic transit observations using the CHIRON spectroscopic facility. We present a global model that accounts for large surface brightness features typical of such young stars during spectroscopic transit observations. With a value of | λ | = 5.8-5.7+2.8 it is unlikely that this well-aligned system is the result of a high-eccentricity-driven migration history. By being the youngest planet with a known obliquity, HIP 67522 b holds a special place in contributing to our understanding of giant planet formation and evolution. Our analysis shows the feasibility of such measurements for young and very active stars

    TOI-942b: A Prograde Neptune in a ∼ 60 Myr Old Multi-transiting System

    Get PDF
    Mapping the orbital obliquity distribution of young planets is one avenue toward understanding mechanisms that sculpt the architectures of planetary systems. TOI-942 is a young field star, with an age of ∼60 Myr, hosting a planetary system consisting of two transiting Neptune-sized planets in 4.3 and 10.1 day period orbits. We observed the spectroscopic transits of the inner Neptune TOI-942b to determine its projected orbital obliquity angle. Through two partial transits, we find the planet to be in a prograde orbit, with a projected obliquity angle of |λ| = 1-33+41 deg. In addition, incorporating the light curve and the stellar rotation period, we find the true 3D obliquity to be 2-23+27 deg. We explored various sources of uncertainties specific to the spectroscopic transits of planets around young active stars, and showed that our reported obliquity uncertainty fully encompassed these effects. TOI-942b is one of the youngest planets to have its obliquity characterized, and one of even fewer residing in a multi-planet system. The prograde orbital geometry of TOI-942b is in line with systems of similar ages, none of which have yet been identified to be in strongly misaligned orbits

    The Discovery of a Planetary Companion Interior to Hot Jupiter WASP-132 b

    Get PDF
    Hot Jupiters are generally observed to lack close planetary companions, a trend that has been interpreted as evidence for high-eccentricity migration. We present the discovery and validation of WASP-132 c (TOI-822.02), a 1.85 ± 0.10 R ⊕ planet on a 1.01 day orbit interior to the hot Jupiter WASP-132 b. Transiting Exoplanet Survey Satellite and ground-based follow-up observations, in conjunction with vetting and validation analysis, enable us to rule out common astrophysical false positives and validate the observed transit signal produced by WASP-132 c as a planet. Running the validation tools vespa and TRICERATOPS on this signal yields false-positive probabilities of 9.02 × 10-5 and 0.0107, respectively. Analysis of archival CORALIE radial velocity data leads to a 3σ upper limit of 28.23 ms-1 on the amplitude of any 1.01 day signal, corresponding to a 3σ upper mass limit of 37.35 M ⊕. Dynamical simulations reveal that the system is stable within the 3σ uncertainties on the planetary and orbital parameters for timescales of ∼100 Myr. The existence of a planetary companion near the hot Jupiter WASP-132 b makes the giant planet's formation and evolution via high-eccentricity migration highly unlikely. Being one of just a handful of nearby planetary companions to hot Jupiters, WASP-132 c carries with it significant implications for the formation of the system and hot Jupiters as a population

    TIC 278956474: Two Close Binaries in One Young Quadruple System Identified by TESS

    Get PDF
    We have identified a quadruple system with two close eclipsing binaries in Transiting Exoplanet Survey Satellite (TESS) data. The object is unresolved in Gaia and appears as a single source at parallax 1.08 ± 0.01 mas. Both binaries have observable primary and secondary eclipses and were monitored throughout TESS Cycle 1 (sectors 1-13), falling within the TESS Continuous Viewing Zone. In one eclipsing binary (P = 5.488 days), the smaller star is completely occluded by the larger star during the secondary eclipse; in the other (P = 5.674 days) both eclipses are grazing. Using these data, spectroscopy, speckle photometry, spectral energy distribution analysis, and evolutionary stellar tracks, we have constrained the masses and radii of the four stars in the two eclipsing binaries. The Li i equivalent width indicates an age of 10-50 Myr and, with an outer period of 858+7-5 days, our analysis indicates this is one of the most compact young 2 + 2 quadruple systems known

    TESS hunt for young and maturing exoplanets (THYME). V. A sub-neptune transiting a young star in a newly discovered 250myr association

    Get PDF
    The detection and characterization of young planetary systems offer a direct path to study the processes that shape planet evolution. We report on the discovery of a sub-Neptune-sized planet orbiting the young star HD 110082 (TOI-1098). Transit events we initially detected during TESS Cycle 1 are validated with time-series photometry from Spitzer. High-contrast imaging and high-resolution, optical spectra are also obtained to characterize the stellar host and confirm the planetary nature of the transits. The host star is a late-F dwarf (Må = 1.2Me) with a low-mass, M dwarf binary companion (Må = 0.26Me) separated by nearly one arcminute (∼6200 au). Based on its rapid rotation and Lithium absorption, HD 110082 is young, but is not a member of any known group of young stars (despite proximity to the Octans association). To measure the age of the system, we search for coeval, phase-space neighbors and compile a sample of candidate siblings to compare with the empirical sequences of young clusters and to apply quantitative age-dating techniques. In doing so, we find that HD 110082 resides in a new young stellar association we designate MELANGE-1, with an age of 250-+7050 Myr. Jointly modeling the TESS and Spitzer light curves, we measure a planetary orbital period of 10.1827 days and radius of Rp = 3.2 ± 0.1R+. HD 110082 b’s radius falls in the largest 12% of field-age systems with similar host-star mass and orbital period. This finding supports previous studies indicating that young planets have larger radii than their field-age counterparts

    A Mini-Neptune from TESS and CHEOPS Around the 120 Myr Old AB Dor Member HIP 94235

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) mission has enabled discoveries of the brightest transiting planet systems around young stars. These systems are the benchmarks for testing theories of planetary evolution. We report the discovery of a mini-Neptune transiting a bright star in the AB Doradus moving group. HIP 94235 (TOI-4399, TIC 464646604) is a V mag = 8.31 G-dwarf hosting a 3.00-0.28+0.32R⊠mini-Neptune in a 7.7 day period orbit. HIP 94235 is part of the AB Doradus moving group, one of the youngest and closest associations. Due to its youth, the host star exhibits significant photometric spot modulation, lithium absorption, and X-ray emission. Three 0.06% transits were observed during Sector 27 of the TESS Extended Mission, though these transit signals are dwarfed by the 2% peak-To-peak photometric variability exhibited by the host star. Follow-up observations with the Characterising Exoplanet Satellite confirmed the transit signal and prevented the erosion of the transit ephemeris. HIP 94235 is part of a 50 au G-M binary system. We make use of diffraction limited observations spanning 11 yr, and astrometric accelerations from Hipparcos and Gaia, to constrain the orbit of HIP 94235 B. HIP 94235 is one of the tightest stellar binaries to host an inner planet. As part of a growing sample of bright, young planet systems, HIP 94235 b is ideal for follow-up transit observations, such as those that investigate the evaporative processes driven by high-energy radiation that may sculpt the valleys and deserts in the Neptune population
    corecore