147 research outputs found
Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors
Bartonella spp. are facultative intracellular bacteria that cause characteristic hostrestricted hemotropic infections in mammals and are typically transmitted by blood-sucking arthropods. In the mammalian reservoir, these bacteria initially infect a yet unrecognized primary niche, which seeds organisms into the blood stream leading to the establishment of a long-lasting intra-erythrocytic bacteremia as the hall-mark of infection. Bacterial type IV secretion systems, which are supra-molecular transporters ancestrally related to bacterial conjugation systems, represent crucial pathogenicity factors that have contributed to a radial expansion of the Bartonella lineage in nature by facilitating adaptation to unique mammalian hosts. On the molecular level, the type IV secretion system VirB/VirD4 is known to translocate a cocktail of different effector proteins into host cells, which subvert multiple cellular functions to the benefit of the infecting pathogen. Furthermore, bacterial adhesins mediate a critical, early step in the pathogenesis of the bartonellae by binding to extracellular matrix components of host cells, which leads to firm bacterial adhesion to the cell surface as a prerequisite for the efficient translocation of type IV secretion effector proteins. The best-studied adhesins in bartonellae are the orthologous trimeric autotransporter adhesins, BadA in Bartonella henselae and the Vomp family in Bartonella quintana. Genetic diversity and strain variability also appear to enhance the ability of bartonellae to invade not only specific reservoir hosts, but also accidental hosts, as shown for B. henselae. Bartonellae have been identified in many different blood-sucking arthropods, in which they are typically found to cause extracellular infections of the mid-gut epithelium. Adaptation to specific vectors and reservoirs seems to be a common strategy of bartonellae for transmission and host diversity. However, knowledge regarding arthropod specificity/res
Verbal memory and sentence comprehension in aphasia: a case series
This case series explores the relationship between verbal memory capacity and sentence comprehension in four patients with aphasia. Two sentence comprehension tasks showed that two patients, P1 and P2, had impaired syntactic comprehension, whereas P3 and P4’s sentence comprehension was intact. The memory assessment tasks showed that P1 and P2 had severely impaired short-term memory, whereas P3 and P4 performed within the normal range in the short-term memory tasks. This finding suggests an association between short-term memory deficit and sentence comprehension difficulties. P1 and P3 exhibited impaired comparable working memory deficits, suggesting a dissociation between working memory and sentence comprehension
Bartonella spp. isolated from wild and domestic ruminants in North America.
Bartonella species were isolated from 49% of 128 cattle from California and Oklahoma, 90% of 42 mule deer from California, and 15% of 100 elk from California and Oregon. Isolates from all 63 cattle, 14 deer, and 1 elk had the same polymerase chain reaction/restriction fragment length polymorphism profiles. Our findings indicate potential for inter- and intraspecies transmission among ruminants, as well as risk that these Bartonella spp. could act as zoonotic agents
Detection of Bartonella henselae DNA in clinical samples including peripheral blood of immune competent and immune compromised patients by three nested amplifications
Bacteria of the genus Bartonella are emerging pathogens detected in lymph node biopsies and aspirates probably caused by increased concentration of bacteria. Twenty-three samples of 18 patients with clinical, laboratory and/or epidemiological data suggesting bartonellosis were subjected to three nested amplifications targeting a fragment of the 60-kDa heat shock protein (HSP), the internal transcribed spacer 16S-23S rRNA (ITS) and the cell division (FtsZ) of Bartonella henselae, in order to improve detection in clinical samples. In the first amplification 01, 04 and 05 samples, were positive by HSP (4.3%), FtsZ (17.4%) and ITS (21.7%), respectively. After the second round six positive samples were identified by nested-HSP (26%), eight by nested-ITS (34.8%) and 18 by nested-FtsZ (78.2%), corresponding to 10 peripheral blood samples, five lymph node biopsies, two skin biopsies and one lymph node aspirate. The nested-FtsZ was more sensitive than nested-HSP and nested-ITS (p < 0.0001), enabling the detection of Bartonella henselae DNA in 15 of 18 patients (83.3%). In this study, three nested-PCR that should be specific for Bartonella henselae amplification were developed, but only the nested-FtsZ did not amplify DNA from Bartonella quintana. We conclude that nested amplifications increased detection of B. henselae DNA, and that the nested-FtsZ was the most sensitive and the only specific to B. henselae in different biological samples. As all samples detected by nested-HSP and nested-ITS, were also by nested-FtsZ, we infer that in our series infections were caused by Bartonella henselae. The high number of positive blood samples draws attention to the use of this biological material in the investigation of bartonellosis, regardless of the immune status of patients. This fact is important in the case of critically ill patients and young children to avoid more invasive procedures such as lymph nodes biopsies and aspirates
Differential Effects of Bartonella henselae on Human and Feline Macro- and Micro-Vascular Endothelial Cells
Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines
European recommendations on practices in pediatric neuroradiology: consensus document from the European Society of Neuroradiology (ESNR), European Society of Paediatric Radiology (ESPR) and European Union of Medical Specialists Division of Neuroradiology (UEMS)
Pediatric neuroradiology is a subspecialty within radiology, with possible pathways to train within the discipline from neuroradiology or pediatric radiology. Formalized pediatric neuroradiology training programs are not available in most European countries. We aimed to construct a European consensus document providing recommendations for the safe practice of pediatric neuroradiology. We particularly emphasize imaging techniques that should be available, optimal site conditions and facilities, recommended team requirements and specific indications and protocol modifications for each imaging modality employed for pediatric neuroradiology studies. The present document serves as guidance to the optimal setup and organization for carrying out pediatric neuroradiology diagnostic and interventional procedures. Clinical activities should always be carried out in full agreement with national provisions and regulations. Continued education of all parties involved is a requisite for preserving pediatric neuroradiology practice at a high level
Prevalence of Bartonella henselae and Bartonella clarridgeiae in cats in the south of Brazil: a molecular study
Bartonella spp are the causative agent of cat scratch disease in humans. Cats are the natural reservoir of these bacteria and may infect humans through scratches, bites or fleas. Blood samples from 47 cats aged up to 12 months were collected for this study. All animals were lodged in municipal animal shelters in the Vale do Sinos region, Rio Grande do Sul, Brazil. Bartonella spp were detected by genus-specific polymerase chain reaction (PCR) and when the PCR was positive, the species were determined by DNA sequencing. A Giemsa-stained blood smear was also examined for the presence of intraerythrocytic elements suggestive of Bartonella spp infection. Phylogenetic analysis was also performed for all positive samples. Using molecular detection methods, Bartonella spp were detected in 17.02% (8/47) of the samples. In seven out of eight samples confirmed to be positive for Bartonella spp, blood smear examination revealed the presence of intraerythrocytic elements suggestive of Bartonella spp. Phylogenetic analysis characterized positive samples as Bartonella henselae (5) or Bartonella clarridgeiae (3). To the best of our knowledge, this is the first molecular study demonstrating the presence of Bartonella spp in cats from the Southern Region of Brazil
Multi-Locus Sequence Typing of Bartonella henselae Isolates from Three Continents Reveals Hypervirulent and Feline-Associated Clones
Bartonella henselae is a zoonotic pathogen and the causative agent of cat scratch disease and a variety of other disease manifestations in humans. Previous investigations have suggested that a limited subset of B. henselae isolates may be associated with human disease. In the present study, 182 human and feline B. henselae isolates from Europe, North America and Australia were analysed by multi-locus sequence typing (MLST) to detect any associations between sequence type (ST), host species and geographical distribution of the isolates. A total of 14 sequence types were detected, but over 66% (16/24) of the isolates recovered from human disease corresponded to a single genotype, ST1, and this type was detected in all three continents. In contrast, 27.2% (43/158) of the feline isolates corresponded to ST7, but this ST was not recovered from humans and was restricted to Europe. The difference in host association of STs 1 (human) and 7 (feline) was statistically significant (P≤0.001). eBURST analysis assigned the 14 STs to three clonal lineages, which contained two or more STs, and a singleton comprising ST7. These groups were broadly consistent with a neighbour-joining tree, although splits decomposition analysis was indicative of a history of recombination. These data indicate that B. henselae lineages differ in their virulence properties for humans and contribute to a better understanding of the population structure of B. henselae
- …