3 research outputs found

    UV-induced fragmentation of Cajal bodies

    Get PDF
    The morphology and composition of subnuclear organelles, such as Cajal bodies (CBs), nucleoli, and other nuclear bodies, is dynamic and can change in response to a variety of cell stimuli, including stress. We show that UV-C irradiation disrupts CBs and alters the distribution of a specific subset of CB components. The effect of UV-C on CBs differs from previously reported effects of transcription inhibitors. We demonstrate that the mechanism underlying the response of CBs to UV-C is mediated, at least in part, by PA28γ (proteasome activator subunit γ). The presence of PA28γ in coilin-containing complexes is increased by UV-C. Overexpression of PA28γ, in the absence of UV-C treatment, provokes a similar redistribution of the same subset of CB components that respond to UV-C. RNA interference–mediated knockdown of PA28γ attenuates the nuclear disruption caused by UV-C. These data demonstrate that CBs are specific nuclear targets of cellular stress-response pathways and identify PA28γ as a novel regulator of CB integrity

    Mass spectrometry-based immuno-precipitation proteomics - The user's guide

    No full text
    Immuno-precipitation (IP) experiments using MS provide a sensitive and accurate way of characterising protein complexes and their response to regulatory mechanisms. Differences in stoichiometry can be determined as well as the reliable identification of specific binding partners. The quality control of IP and protein interaction studies has its basis in the biology that is being observed. Is that unusual protein identification a genuine novelty, or an experimental irregularity? Antibodies and the solid matrices used in these techniques isolate not only the target protein and its specific interaction partners but also many non-specific ‘contaminants’ requiring a structured analysis strategy. These methodological developments and the speed and accuracy of MS machines, which has been increasing consistently in the last 5 years, have expanded the number of proteins identified and complexity of analysis. The European Science Foundation’s Frontiers in Functional Genomics programme ‘Quality Control in Proteomics’ Workshop provided a forum for disseminating knowledge and experience on this subject. Our aim in this technical brief is to outline clearly, for the scientists wanting to carry out this kind of experiment, and recommend what, in our experience, are the best potential ways to design an IP experiment, to help identify possible pitfalls, discuss important controls and outline how to manage and analyse the large amount of data generated. Detailed experimental methodologies have been referenced but not described in the form of protocols

    HSP90 and Its R2TP/Prefoldin-like Cochaperone Are Involved in the Cytoplasmic Assembly of RNA Polymerase II

    No full text
    RNA polymerases are key multisubunit cellular enzymes. Microscopy studies indicated that RNA polymerase I assembles near its promoter. However, the mechanism by which RNA polymerase II is assembled from its 12 subunits remains unclear. We show here that RNA polymerase II subunits Rpb1 and Rpb3 accumulate in the cytoplasm when assembly is prevented and that nuclear import of Rpb1 requires the presence of all subunits. Using MS-based quantitative proteomics, we characterized assembly intermediates. These included a cytoplasmic complex containing subunits Rpb1 and Rpb8 associated with the HSP90 cochaperone hSpagh (RPAP3) and the R2TP/Prefoldin-like complex. Remarkably, HSP90 activity stabilized incompletely assembled Rpb1 in the cytoplasm. Our data indicate that RNA polymerase II is built in the cytoplasm and reveal quality-control mechanisms that link HSP90 to the nuclear import of fully assembled enzymes. hSpagh also bound the free RPA194 subunit of RNA polymerase I, suggesting a general role in assembling RNA polymerases
    corecore