13 research outputs found

    DNA translocation to giant unilamellar vesicles during electroporation is independent of DNA size

    Get PDF
    Delivery of naked DNA molecules into living cells via physical disruption of the membrane under electric pulses has potential biomedical applications ranging from gene electro-transfer, electro-chemotherapy, to gene therapy, yet the mechanisms involved in DNA transport remain vague. To investigate the mechanism of DNA translocation across the cell membrane, giant unilamellar vesicles (GUVs) were electroporated in the presence of DNA molecules keeping the size of the DNA molecules as a variable parameter. We experimentally determined the translocation efficiency for each size of the DNA molecule, to compare the results with the existing and conflicting theories of the translocation mechanism i.e. stochastic threading and bulk electrophoresis. We observed that the translocation efficiency is independent of DNA size (ranging from 25-20 000 bp, bp = base pairs), implying that DNA molecules translocate freely across the electro-pores in the lipid membrane in their native polymer conformation, as opposed to unravelling and threading through the electro-pore. Bulk electrophoretic mobility determines the relationship between translocation efficiency and the size of the DNA molecule. This research provides experimental evidence of the mechanistic understanding of DNA translocation across lipid membranes which is essential for devising efficient and predictable protocols for electric field mediated naked DNA delivery.FWN – Publicaties zonder aanstelling Universiteit Leide

    Visualizing Dynamic Changes During TGF-β-Induced Epithelial to Mesenchymal Transition

    Get PDF
    Epithelial to mesenchymal transition (EMT) is crucial during embryonic development, tissue fibrosis, and cancer progression. Epithelial cells that display a cobblestone-like morphology can undergo a switch to mesenchymal-like phenotype, displaying an elongated spindle shape or a fibroblast-like morphology. EMT is characterized by timely and reversible alterations of molecular and cellular processes. The changes include loss of epithelial and gain of mesenchymal marker expression, loss of polarity, increased cell migratory and invasive properties. Epithelial cells can progress unevenly during this transition and attain hybrid E/M states or metastable EMT states, referred to as epithelial cell plasticity. To gain a deeper insight into the mechanism of EMT, understanding the dynamic aspects of this process is essential. One of the most prominent factors to induce EMT is the cytokine transforming growth factor-β (TGF-β). This chapter discusses molecular and cellular techniques to monitor TGF-β-induced signaling and EMT changes in normal and cancer cell lines. These methods include measuring the TGF-β-induced activation of its intracellular SMAD effectors proteins and changes in epithelial/mesenchymal marker expression and localization. Moreover, we describe assays of cell migration and dynamic reorganization of the actin cytoskeleton and stress filaments that are frequently part of the TGF-β-induced EMT cellular response.Cancer Signaling networks and Molecular Therapeutic

    Microfluidics meets 3D cancer cell migration

    No full text
    An early step of metastasis requires a complex and coordinated migration of invasive tumor cells into the surrounding tumor microenvironment (TME), which contains extracellular matrix (ECM). It is being appreciated that 3D matrix -based microfluidic models have an advantage over conventional in vitro and animal models to study tumor progression events. Recent microfluidic models have enabled recapitulation of key mechanobiological features present within the TME to investigate collective cancer cell migration and invasion. Microfluidics also allows for functional interrogation and therapeutic manipulation of specific steps to study the dynamic aspects of tumor progression. In this review, we focus on recent developments in cancer cell migration and how microfluidic strategies have evolved to address the physiological complexities of the TME to visualize migration modes adapted by various tumor cells.Cancer Signaling networks and Molecular Therapeutic

    Microfluidics meets 3D cancer cell migration

    No full text
    An early step of metastasis requires a complex and coordinated migration of invasive tumor cells into the surrounding tumor microenvironment (TME), which contains extracellular matrix (ECM). It is being appreciated that 3D matrix -based microfluidic models have an advantage over conventional in vitro and animal models to study tumor progression events. Recent microfluidic models have enabled recapitulation of key mechanobiological features present within the TME to investigate collective cancer cell migration and invasion. Microfluidics also allows for functional interrogation and therapeutic manipulation of specific steps to study the dynamic aspects of tumor progression. In this review, we focus on recent developments in cancer cell migration and how microfluidic strategies have evolved to address the physiological complexities of the TME to visualize migration modes adapted by various tumor cells

    Scaling of mixing time for droplets of different sizes traveling through a serpentine microchannel

    No full text
    Here, we investigate separately the dependence of the mixing time on the size and velocity of micro-droplets moving through serpentine channels. We find that the mixing time scales linearly with droplet size. All experimental data collapse on a master-line, when the convective time scale is multiplied by the dimensionless droplet size.FWN – Publicaties zonder aanstelling Universiteit Leide

    Elastic instabilities during the flow of hydrolyzed polyacrylamide solution in porous media: effect of pore-shape and salt

    No full text
    We experimentally investigate the flow of hydrolyzed polyacrylamide (HPAM) solution with and without salt in model porous media at high Weissenberg numbers (Wi > 1.0). The effect of pore shapes on the flow pattern and pressure drop is explored by using periodic arrays of circular and square pillars in aligned and staggered layouts. In the apparent shear-thinning regime, we observe stationary dead zones upstream of the pillars. In addition, we confirm that the size of stationary dead zones correlates with the level of shear-thinning, by varying the amount of salt in HPAM solution. At higher shear rates (or Wi), these dead zones are periodically washed away. We present the mechanism of this elastic instability and characterize it based on the pressure drop fluctuation spectral density.FWN – Publicaties zonder aanstelling Universiteit Leide

    Shear banding in entangled polymers in the micron scale gap: A confocal-rheoscopic study

    No full text
    Recent shear experiments in well-entangled polymer solutions demonstrated that interfacial wall slip is the only source of shear rate loss and there is no evidence of shear banding in the micron scale gap. In this work, we experimentally elucidate how molecular parameters such as slip length, b, influence shear inhomogeneity of entangled polybutadiene (PBD) solutions during shear in a small gap H ? 50 ?m. Simultaneous rheometric and velocimetric measurements are performed on two PBD solutions with the same level of entanglements (Z = 54) in two PBD solvents with molecular weights of 1.5 kg mol?1 and 10 kg mol?1 that possess different levels of shear inhomogeneity (2bmax/H = 17 and 240). For the PBD solution made with a low molecular weight PBD solvent of 1.5 kg mol?1, wall slip is the dominant response within the accessible range of the shear rate, i.e., up to the nominal Weissenberg number (Wi) as high as 290. On the other hand, wall slip is minimized using a high molecular-weight PBD solvent of 10 kg mol?1 so that bulk shear banding is observed to take place in the steady state for Wi > 100. Finally, these findings and previous results are in good agreement with our recently proposed phase diagram in the parameter space of apparent Wi versus 2bmax/H suggesting that shear banding develops across the micron scale gap when the imposed Wi exceeds 2bmax/H [Wang et al., Macromolecules, 2011, 44, 183].Chemical EngineeringApplied Science

    A Programmable Multifunctional 3D Cancer Cell Invasion Micro Platform

    No full text
    In the research of cancer cell invasion and metastasis, recreation of physiologically relevant and faithful three-dimensional (3D) tumor models that recapitulate spatial architecture, spatiotemporal control of cell communication and signaling pathways, and integration of extracellular cues remains an open challenge. Here, a programmable multifunctional 3D cancer cell invasion microbuckets-hydrogel (Mb-H) platform is developed by integrating various function-variable microbuckets and extracellular matrix (ECM)-like hydrogels. Based on this Mb-H micro platform, the aggregation of multi-cancer cells is well controlled to form cancer cell spheroids, and the guiding relationship of single-cell migration and collective cell migration during the epithelial-mesenchymal transition (EMT) of cancer cell invasion are demonstrated. By programming and precisely assembling multiple functions in one system, the Mb-H platform with spatial-temporal controlled release of cytokine transforming growth factor beta (TGF-beta) and various functionalized Mb-H platforms with intelligent adjustment of cell-matrix interactions are engineered to coordinate the 3D invasive migration of cancer cell spheroids. This programmable and adaptable 3D cancer cell invasion micro platform takes a new step toward mimicking the dynamically changing (localized) tumor microenvironment and exhibits wide potential applications in cancer research, bio-fabrication, cell signaling, and drug screening

    Interstitial flow potentiates TGF-β/Smad-signaling activity in lung cancer spheroids in a 3D-microfluidic chip

    Get PDF
    Within the tumor microenvironment (TME), cancer cells use mechanotransduction pathways to convert biophysical forces to biochemical signals. However, the underlying mechanisms and functional significance of these pathways remain largely unclear. The upregulation of mechanosensitive pathways from biophysical forces such as interstitial flow (IF), leads to the activation of various cytokines, including transforming growth factor-β (TGF-β). TGF-β promotes in part via a Smad-dependent signaling pathway the epithelial–mesenchymal transition (EMT) in cancer cells. The latter process is linked to increased cancer cell motility and invasion. Current research models have limited ability to investigate the combined effects of biophysical forces (such as IF) and cytokines (TGF-β) in a 3D microenvironment. We used a 3D-matrix based microfluidic platform to demonstrate the potentiating effect of IF on exogenous TGF-β induced upregulation of the Smad-signaling activity and the expression of mesenchymal marker vimentin in A549 lung cancer spheroids. To monitor this, we used stably integrated fluorescent based reporters into the A549 cancer cell genome. Our results demonstrate that IF enhances exogenous TGF-β induced Smad-signaling activity in lung cancer spheroids embedded in a matrix microenvironment. In addition, we observed an increased cell motility for A549 spheroids when exposed to IF and TGF-β. Our 3D-microfluidic model integrated with real-time imaging provides a powerful tool for investigating cancer cell signaling and motility associated with invasion characteristics in a physiologically relevant TME. Cancer Signaling networks and Molecular Therapeutic
    corecore