2 research outputs found

    Structural and optical modeling of electro deposited CuInSe2 thin films

    No full text
    The ternary semiconductor CuInSe2 is one of the most advantageous materials for the manufacturing of thin film solar cells. In this study, CuInSe2 thin films were prepared at room temperature using the electrodepositing method. The as-prepared films were found to be amorphous. The CuInSe2 films were crystallized in a tubular resistive furnace, and characterized by means of the the X-ray diffraction (XRD) and UV-VIS-NIR spectroscopy techniques. The parameters to optimize are the temperature and duration of the annealing time, and the Cu/In ratio in the precursors

    The use of chemical vapor etching in multicrystalline silicon solar cells

    No full text
    With the purpose to increase the light confinement and the efficiency of silicon solar cells, the reflection of the surface emitter needs to be minimized and the minority carrier collection improved. This improvement is currently achieved by the application of the chemical vapor etching (CVE) technique. In this paper, we investigate the effects of CVE on surface texturing and silicon grooving. CVE-based porous silicon (PS) was found to be a good antireflection and passivation layer for multicrystalline Si (mc-Si) solar cells. As a result, the reflectivity of the mc-Si solar cell decreases by about 60% of its initial value in the 650–950 nm spectral range and the internal quantum efficiency improves by 30% after PS application in the 400–700 nm spectral range. CVE can be used for surface texturing of single or mc-Si Si wafer leading to lower surface reflectivity and reduction of the dead layer. The chemical vapor etching techniques enabled realize buried metallic contacts by grooving mc-Si silicon wafers. The spectral response of mc-Si solar cells was found to enhance of about 12% in the long wavelength range when a rear buried metallic contacts is achieved, while a significant increase of about 35% was observed at short wavelengths (400–650 nm spectral range) subsequent front grid buried metallic contacts realization
    corecore