3 research outputs found

    Taming the Leibniz Rule on the Lattice

    Full text link
    We study a product rule and a difference operator equipped with Leibniz rule in a general framework of lattice field theory. It is shown that the difference operator can be determined by the product rule and some initial data through the Leibniz rule. This observation leads to a no-go theorem that it is impossible to construct any difference operator and product rule on a lattice with the properties of (i) translation invariance, (ii) locality and (iii) Leibniz rule. We present a formalism to overcome the difficulty by an infinite flavor extension or a matrix expression of a lattice field theory.Comment: 15 page

    Differential Calculi on Commutative Algebras

    Full text link
    A differential calculus on an associative algebra A is an algebraic analogue of the calculus of differential forms on a smooth manifold. It supplies A with a structure on which dynamics and field theory can be formulated to some extent in very much the same way we are used to from the geometrical arena underlying classical physical theories and models. In previous work, certain differential calculi on a commutative algebra exhibited relations with lattice structures, stochastics, and parametrized quantum theories. This motivated the present systematic investigation of differential calculi on commutative and associative algebras. Various results about their structure are obtained. In particular, it is shown that there is a correspondence between first order differential calculi on such an algebra and commutative and associative products in the space of 1-forms. An example of such a product is provided by the Ito calculus of stochastic differentials. For the case where the algebra A is freely generated by `coordinates' x^i, i=1,...,n, we study calculi for which the differentials dx^i constitute a basis of the space of 1-forms (as a left A-module). These may be regarded as `deformations' of the ordinary differential calculus on R^n. For n < 4 a classification of all (orbits under the general linear group of) such calculi with `constant structure functions' is presented. We analyse whether these calculi are reducible (i.e., a skew tensor product of lower-dimensional calculi) or whether they are the extension (as defined in this article) of a one dimension lower calculus. Furthermore, generalizations to arbitrary n are obtained for all these calculi.Comment: 33 pages, LaTeX. Revision: A remark about a quasilattice and Penrose tiling was incorrect in the first version of the paper (p. 14

    Fermion models on the lattice and in field theory

    No full text
    SIGLEAvailable from British Library Lending Division - LD:D65079/86 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore