73 research outputs found
Recommended from our members
Closed-loop management of inpatient hyperglycemia.
The prevalence of diabetes in the hospital is increasing and approximately 18-20% of hospital beds are occupied by someone with diabetes [1]. Diabetes disproportionally affects the elderly, with three times greater prevalence in hospitalised people aged over 65 years than in those aged under 45 years [2]. Maintaining near normoglycaemia during hospital admissions can be very challenging. The impact of the current illness, medication changes, alterations to meal timings and intake, and requirement for nutrition support in hospital can all contribute to sub-optimal glucose control. Both hyper- and hypoglycemia in hospital are associated with increased risk of complications, length of stay, admission to the intensive care unit and mortality [3].Diabetes UK (#14/0004878), Swiss National Science Foundation (P1BEP3_165297) and European Foundation for the Study of Diabetes. Additional support for the Artificial Pancreas work by JDRF, National Institute for Health Research Cambridge Biomedical Research Centre and Wellcome Trust Strategic Award (100574/Z/12/Z)
Correction to: New closed-loop insulin systems.
A Correction to this paper has been published: 10.1007/s00125-021-05443-1</jats:p
Recommended from our members
New closed-loop insulin systems.
Advances in diabetes technologies have enabled the development of automated closed-loop insulin delivery systems. Several hybrid closed-loop systems have been commercialised, reflecting rapid transition of this evolving technology from research into clinical practice, where it is gradually transforming the management of type 1 diabetes in children and adults. In this review we consider the supporting evidence in terms of glucose control and quality of life for presently available closed-loop systems and those in development, including dual-hormone closed-loop systems. We also comment on alternative 'do-it-yourself' closed-loop systems. We remark on issues associated with clinical adoption of these approaches, including training provision, and consider limitations of presently available closed-loop systems and areas for future enhancements to further improve outcomes and reduce the burden of diabetes management
Recommended from our members
Hybrid Closed-loop to Manage Gastroparesis in People With Type 1 Diabetes: a Case Series.
BACKGROUND: Gastroparesis is associated with unpredictable gastric emptying and can lead to erratic glucose profiles and negative impacts on quality-of-life. Many people with gastroparesis are unable to meet glycemic targets and there is a need for new approaches for this population. Hybrid closed-loop systems improve glucose control and quality-of-life but evidence for their use in people with diabetic gastroparesis is limited. METHODS: We present a narrative review of the challenges associated with type 1 diabetes management for people with gastroparesis and present a case series of 7 people with type 1 diabetes and gastroparesis. We compare glycemic control before and during the first 12 months of hybrid closed-loop therapy. Data were analyzed using electronic patient records and glucose management platforms. We also discuss future advancements for closed-loop systems that may benefit this population. RESULTS: Five of 7 patients had data available for time in range before and during hybrid closed-loop therapy, and all had an improvement in percentage time in target glucose range, with the overall mean time in range increasing from 26.0% ± 15.7% to 58.4% ± 8.6% during HCL use, (P = .004). There were significant reductions in HbA1c (83 ± 9 mmol/mol to 71 ± 14 mmol/mol) and mean glucose from 13.0 ± 1.7 mmol/L (234 ± 31 mg/dL) to 10.0 ± 0.7 mmol/L (180 ± 13 mg/dL) with use of a hybrid closed-loop system. Importantly, this was achieved without an increase in time in hypoglycemia (P = .50). CONCLUSION: Hybrid closed-loop systems may represent a valuable approach to improve glycemic control for people with type 1 diabetes and gastroparesis. Prospective studies are required to confirm these findings
Recommended from our members
Implementation of dapagliflozin as adjunctive therapy in type 1 diabetes: A single centre real-world experience.
Recommended from our members
Training and Support for Hybrid Closed-Loop Therapy.
Hybrid closed-loop therapy is an emerging technology transforming the management of type 1 diabetes (T1D). Research studies demonstrate glycemic and quality of life benefits of hybrid closed-loop therapy for people with T1D. Translating these outcomes into standard clinical practice is critical for reimbursement and improving access to this technology.High-quality training is essential for achieving optimal outcomes with hybrid closed-loop therapy. Basic diabetes skills and tasks are as important, or even more important, with closed-loop therapy than with standard insulin therapy and need to be reiterated. Establishing expectations of hybrid closed-loop therapy clearly at the outset promotes long-term usage and optimal outcomes.We share key aspects of training and support for users of commercially available hybrid closed-loop systems and consider who may benefit from this technology
CamAPS FX hybrid closed-loop with ultra-rapid lispro compared with standard lispro in adults with type 1 diabetes: a double-blind, randomized, crossover study.
INTRODUCTION
To evaluate hybrid closed-loop with ultra-rapid insulin lispro (Lyumjev) compared with hybrid closed-loop with standard insulin lispro in adults with type 1 diabetes.
MATERIALS AND METHODS
In a single-center, double-blind, randomized, crossover study, 28 adults with type 1 diabetes (mean±SD: age 44.5±10.7, HbA1c 7.1±0.9% [54±10mmol/mol]) underwent two 8-week periods comparing hybrid closed-loop with ultra-rapid insulin lispro and hybrid closed-loop with standard insulin lispro in random order. CamAPS FX closed-loop system was used in both periods.
RESULTS
In an intention-to-treat analysis, the proportion of time sensor glucose was in target range (3.9 to 10mmol/L; primary endpoint) was greater with ultra-rapid lispro compared with standard insulin lispro (mean±SD: 78.7±9.8% vs. 76.2±9.6%; mean difference 2.5 percentage points [95%CI 0.8 to 4.2]; p=0.005). Mean sensor glucose was lower with ultra-rapid lispro compared with standard insulin lispro (7.9±0.8mmol/L vs. 8.1±0.9mmol/L; p=0.048). The proportion of time with sensor glucose <3.9mmol/L was similar between interventions (median [IQR] ultra-rapid lispro 2.3% [1.3-2.7%] vs. standard insulin lispro 2.1% [1.4-3.3%]; p=0.33). No severe hypoglycemia or ketoacidosis occurred.
CONCLUSIONS
The use of ultra-rapid lispro with CamAPS FX hybrid closed-loop increases time in range and reduces mean glucose with no difference in hypoglycemia compared with standard insulin lispro in adults with type 1 diabetes
What Training, Support, and Resourcing Do Health Professionals Need to Support People Using a Closed-Loop System? A Qualitative Interview Study with Health Professionals Involved in the Closed Loop from Onset in Type 1 Diabetes (CLOuD) Trial.
Background: We explored health professionals' views about the training, support, and resourcing needed to support people using closed-loop technology in routine clinical care to help inform the development of formal guidance. Methods: Interviews were conducted with health professionals (n = 22) delivering the Closed Loop from Onset in Type 1 Diabetes (CLOuD) trial after they had ≥6 months' experience of supporting participants using a closed-loop system. Data were analyzed descriptively. Results: Interviewees described how, compared with other insulin regimens, teaching and supporting individuals to use a closed-loop system could be initially more time-consuming. However, they also noted that after an initial adjustment period, users had less need for initiating contact with the clinical team compared with people using pumps or multiple daily injections. Interviewees highlighted how a lessened need for ad hoc clinical input could result in new challenges; specifically, they had fewer opportunities to reinforce users' diabetes knowledge and skills and detect potential psychosocial problems. They also observed heightened anxiety among some parents due to the constant availability of data and unrealistic expectations about the system's capabilities. Interviewees noted that all local diabetes teams should be empowered to deliver closed-loop system care, but stressed that health professionals supporting closed-loop users in routine care will need comprehensive technology training and standardized clinical guidance. Conclusion: These findings constitute an important starting point for the development of formal guidance to support the rollout of closed-loop technology. Our recommendations, if actioned, will help limit the potential additional burden of introducing closed-loop systems in routine clinical care and help inform appropriate user education and support.NIHR
Wellcome Trust Strategic Award (100574/Z/12/Z
Fully automated closed-loop glucose control compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis: an open-label, randomized crossover trial
Funder: CB was supported by a grant from The Novo Nordisk UK Research FoundationFunder: LB was supported by a grant of the Swiss Society for Endocrinology and a grant of the Diabetes and Swiss Kidney Foundation.Funder: Supported by National Institute for Health Research Cambridge Biomedical Research Centre.Abstract: We evaluated the safety and efficacy of fully closed-loop insulin therapy compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis. In an open-label, multinational, two-center, randomized crossover trial, 26 adults with type 2 diabetes requiring dialysis (17 men, 9 women, average age 68 ± 11 years (mean ± s.d.), diabetes duration of 20 ± 10 years) underwent two 20-day periods of unrestricted living, comparing the Cambridge fully closed-loop system using faster insulin aspart (‘closed-loop’) with standard insulin therapy and a masked continuous glucose monitor (‘control’) in random order. The primary endpoint was time in target glucose range (5.6–10.0 mmol l−1). Thirteen participants received closed-loop first and thirteen received control therapy first. The proportion of time in target glucose range (5.6–10.0 mmol l−1; primary endpoint) was 52.8 ± 12.5% with closed-loop versus 37.7 ± 20.5% with control; mean difference, 15.1 percentage points (95% CI 8.0–22.2; P < 0.001). Mean glucose was lower with closed-loop than control (10.1 ± 1.3 versus 11.6 ± 2.8 mmol l−1; P = 0.003). Time in hypoglycemia (<3.9 mmol l−1) was reduced with closed-loop versus control (median (IQR) 0.1 (0.0–0.4%) versus 0.2 (0.0–0.9%); P = 0.040). No severe hypoglycemia events occurred during the control period, whereas one severe hypoglycemic event occurred during the closed-loop period, but not during closed-loop operation. Fully closed-loop improved glucose control and reduced hypoglycemia compared with standard insulin therapy in adult outpatients with type 2 diabetes requiring dialysis. The trial registration number is NCT04025775
- …