7 research outputs found
Recommended from our members
Scoping analysis of toxic metal performance in DOE low-level waste disposal facilities
This study provides a scoping safety assessment for disposal of toxic metals contained in Department of Energy (DOE) mixed low-level waste (MLLW) at six DOE sites that currently have low-level waste (LLW) disposal facilities--Savannah River Site, Oak Ridge Reservation, Los Alamos National Laboratory, Hanford Reservation, Nevada Test Site, and Idaho National Engineering Laboratory. The study has focused on the groundwater contaminant pathway, which is considered to be the dominant human exposure pathway from shallow land MLLW disposal. A simple and conservative transport analysis has been performed using site hydrological data to calculate site-specific ``permissible`` concentrations of toxic metals in grout-immobilized waste. These concentrations are calculated such that, when toxic metals are leached from the disposal facility by infiltrating water and attenuated in local ground-water system the toxic metal concentrations in groundwater below the disposal facility do not exceed the Maximum Contaminant Levels as stated in the National Primary Drinking Water Regulation. The analysis shows that and sites allow about I00 times higher toxic metal concentrations in stabilized waste leachate than humid sites. From the limited available data on toxic metal concentrations in DOE MLLW, a margin of protection appears to exist in most cases when stabilized wastes containing toxic metals are disposed of at the DOE sites under analysis. Possible exceptions to this conclusion are arsenic, chromium selenium, and mercury when disposed of at some humid sites such as the Oak Ridge Reservation. This analysis also demonstrates that the US Environmental Protection Agency`s prescriptive regulatory approach that defines rigid waste treatment standards does not inherently account for the variety of disposal environments encountered nationwide and may result in either underprotection of groundwater resources (at humid sites) or an excessive margin of protection (at and sites)