456 research outputs found
Following red blood cells in a pulmonary capillary
The red blood cells or erythrocytes are biconcave shaped cells and consist
mostly in a membrane delimiting a cytosol with a high concentration in
hemoglobin. This membrane is highly deformable and allows the cells to go
through narrow passages like the capillaries which diameters can be much
smaller than red blood cells one. They carry oxygen thanks to hemoglobin, a
complex molecule that have very high affinity for oxygen. The capacity of
erythrocytes to load and unload oxygen is thus a determinant factor in their
efficacy. In this paper, we will focus on the pulmonary capillary where red
blood cells capture oxygen. We propose a camera method in order to numerically
study the behavior of the red blood cell along a whole capillary. Our goal is
to understand how erythrocytes geometrical changes along the capillary can
affect its capacity to capture oxygen. The first part of this document presents
the model chosen for the red blood cells along with the numerical method used
to determine and follow their shapes along the capillary. The membrane of the
red blood cell is complex and has been modelled by an hyper-elastic approach
coming from Mills et al (2004). This camera method is then validated and
confronted with a standard ALE method. Some geometrical properties of the red
blood cells observed in our simulations are then studied and discussed. The
second part of this paper deals with the modeling of oxygen and hemoglobin
chemistry in the geometries obtained in the first part. We have implemented a
full complex hemoglobin behavior with allosteric states inspired from
Czerlinski et al (1999).Comment: 17 page
Відділення інформатики Національної академії наук України
Item does not contain fulltext8 p
A silica long base tiltmeter with high stability and resolution
International audienceIn order to be able to provide valuable data in multiparameter measurement field operations, tiltmeters need to have a noise level better or equal than 10-9 rad for a period range from a few minutes to a few years and a long term stability ranging from 10-7 to 10-8 rad/yr. Tiltmeter measurements should also be as much as possible insensitive to thermal disturbances, by taking great care of the horizontality of the base line tube first. Secondly, thermal responses have been assessed. We also took great care of the coupling of our tiltmeters with the bedrock. We've designed a long base tiltmeter with sensors in silica which has a low dilatation coefficient. The linear variable displacement transducer is based on coil coupling (powered by an alternative voltage). Finally we show the results of two 100 m silica water tube tiltmeters which were installed in a mine in the French Vosges massif in the framework of a hydrology research project. These instruments show a remarkably good stability (6.5×10-9 rad/month) and a low noise level (of the order of 10-11 rad). Toroidal and spheroidal free modes of the Earth were observed after the two last major earthquakes on Sumatra
Formation and Propagation of Discontinuity for Boltzmann Equation in Non-Convex Domains
The formation and propagation of singularities for Boltzmann equation in
bounded domains has been an important question in numerical studies as well as
in theoretical studies. Consider the nonlinear Boltzmann solution near
Maxwellians under in-flow, diffuse, or bounce-back boundary conditions. We
demonstrate that discontinuity is created at the non-convex part of the grazing
boundary, then propagates only along the forward characteristics inside the
domain before it hits on the boundary again.Comment: 39 pages, 5 Figure
Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section
This paper focuses on the study of existence and uniqueness of distributional
and classical solutions to the Cauchy Boltzmann problem for the soft potential
case assuming integrability of the angular part of the collision
kernel (Grad cut-off assumption). For this purpose we revisit the
Kaniel--Shinbrot iteration technique to present an elementary proof of
existence and uniqueness results that includes large data near a local
Maxwellian regime with possibly infinite initial mass. We study the propagation
of regularity using a recent estimate for the positive collision operator given
in [3], by E. Carneiro and the authors, that permits to study such propagation
without additional conditions on the collision kernel. Finally, an
-stability result (with ) is presented assuming the
aforementioned condition.Comment: 19 page
Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis
Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors
Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites
Background Despite a long history of attempts to model malaria epidemiology, the over-riding conclusion is that a detailed understanding of host-parasite interactions leading to immunity is required. It is still not known what governs the duration of an infection and how within-human parasite dynamics relate to malaria epidemiology. Presentation of the hypothesis Immunity to Plasmodium falciparum develops slowly and requires repeated exposure to the parasite, which thus generates age-structure in the host-parasite interaction. An age-structured degree of immunity would present the parasite with humans of highly variable quality. Evolutionary theory suggests that natural selection will mould adaptive phenotypes that are more precise (less variant) in "high quality" habitats, where lifetime reproductive success is best. Variability in malaria parasite gametocyte density is predicted to be less variable in those age groups who best infect mosquitoes. Thus, the extent to which variation in gametocyte density is a simple parasite phenotype reflecting the complex within-host parasite dynamics is addressed. Testing the hypothesis Gametocyte densities and corresponding infectiousness to mosquitoes from published data sets and studies in both rural and urban Cameroon are analysed. The mean and variation in gametocyte density according to age group are considered and compared with transmission success (proportion of mosquitoes infected). Across a wide range of settings endemic for malaria, the age group that infected most mosquitoes had the least variation in gametocyte density, i.e. there was a significant relationship between the variance rather than the mean gametocyte density and age-specific parasite transmission success. In these settings, the acquisition of immunity over time was evident as a decrease in asexual parasite densities with age. By contrast, in an urban setting, there were no such age-structured relationships either with variation in gametocyte density or asexual parasite density. Implications of the hypothesis Gametocyte production is seemingly predicted by evolutionary theory, insofar as a reproductive phenotype (gametocyte density) is most precisely expressed (i.e. is most invariant) in the most infectious human age group. This human age group would thus be expected to be the habitat most suitable for the parasite. Comprehension of the immuno-epidemiology of malaria, a requisite for any vaccine strategies, remains poor. Immunological characterization of the human population stratified by parasite gametocyte allocation would be a step forward in identifying the salient immunological pathways of what makes a human a good habitat
Visible photodissociation spectroscopy of PAH cations and derivatives in the PIRENEA experiment
The electronic spectra of gas-phase cationic polycyclic aromatic hydrocarbons
(PAHs), trapped in the Fourier Transform Ion Cyclotron Resonance cell of the
PIRENEA experiment, have been measured by multiphoton dissociation spectroscopy
in the 430-480 nm spectral range using the radiation of a mid-band optical
parametric oscillator laser. We present here the spectra recorded for different
species of increasing size, namely the pyrene cation (C16H10+), the
1-methylpyrene cation (CH3-C16H9+), the coronene cation (C24H12+), and its
dehydrogenated derivative C24H10+. The experimental results are interpreted
with the help of time-dependent density functional theory calculations and
analysed using spectral information on the same species obtained from matrix
isolation spectroscopy data. A kinetic Monte Carlo code has also been used, in
the case of pyrene and coronene cations, to estimate the absorption
cross-sections of the measured electronic transitions. Gas-phase spectra of
highly reactive species such as dehydrogenated PAH cations are reported for the
first time
Global existence and full regularity of the Boltzmann equation without angular cutoff
We prove the global existence and uniqueness of classical solutions around an
equilibrium to the Boltzmann equation without angular cutoff in some Sobolev
spaces. In addition, the solutions thus obtained are shown to be non-negative
and in all variables for any positive time. In this paper, we study
the Maxwellian molecule type collision operator with mild singularity. One of
the key observations is the introduction of a new important norm related to the
singular behavior of the cross section in the collision operator. This norm
captures the essential properties of the singularity and yields precisely the
dissipation of the linearized collision operator through the celebrated
H-theorem
Combining classifiers for robust PICO element detection
<p>Abstract</p> <p>Background</p> <p>Formulating a clinical information need in terms of the four atomic parts which are Population/Problem, Intervention, Comparison and Outcome (known as PICO elements) facilitates searching for a precise answer within a large medical citation database. However, using PICO defined items in the information retrieval process requires a search engine to be able to detect and index PICO elements in the collection in order for the system to retrieve relevant documents.</p> <p>Methods</p> <p>In this study, we tested multiple supervised classification algorithms and their combinations for detecting PICO elements within medical abstracts. Using the structural descriptors that are embedded in some medical abstracts, we have automatically gathered large training/testing data sets for each PICO element.</p> <p>Results</p> <p>Combining multiple classifiers using a weighted linear combination of their prediction scores achieves promising results with an <it>f</it>-measure score of 86.3% for P, 67% for I and 56.6% for O.</p> <p>Conclusions</p> <p>Our experiments on the identification of PICO elements showed that the task is very challenging. Nevertheless, the performance achieved by our identification method is competitive with previously published results and shows that this task can be achieved with a high accuracy for the P element but lower ones for I and O elements.</p
- …