34 research outputs found

    A Critical State Evaluation of Fines Effect on Liquefaction Potential

    Get PDF
    Published results from laboratory tests show that an increase in the percentage of fines generally leads to a reduction of the cyclic liquefaction resistance of a sand, while empirical correlations from in-situ tests consider the presence of fines as beneficial. In order to study this seemingly not univocal effect of tines content, this paper involves the integrated framework of Critical State Soil Mechanics. For this purpose, firstly the effect of tines on the location of the Critical State Line (CSL) is studied through statistical analysis of a large data set of triaxial element tests. Results show that fines affect the CSL location in the (e-lnp) space, but not its slope in (p-q) space. In particular, an increase of fines content practically leads to a clockwise rotation of the CSL in (e-lnp) space. Introducing this finding as a mere change in parameter values of an appropriate Critical State constitutive model, simulations of cyclic undrained triaxial tests were performed. These simulations show that the presence of fines is beneficial at relatively small effective stresses, i.e. the stresses prevailing at liquefiable layers in-situ. Furthermore, these simulations show that the effect is reversed at relatively large effective stresses, i.e. the stresses usually considered in laboratory tests

    Improved Methodology for Estimating Seismic Coefficients for the Pseudo-Static Stability Analysis of Earth Dams

    Get PDF
    This paper presents an improved methodology for estimating seismic coefficients for the pseudo-static stability analysis of earth dams, which is based on a statistical analysis of input data and results for 112 potential failure surfaces, as estimated from 28 two dimensional seismic response analyses for eight (8) different zoned earth dams and high embankments. The new methodology employs design diagrams and equations and estimates the maximum and the effective seismic coefficients as a function of: (a) the peak ground acceleration at the free-field surface of the foundation soil, (b) the predominant period of the seismic excitation, (c) the eigenperiod of the earth dam, (d) the dam foundation conditions, and (e) the dimensionless ratio z/H of the maximum depth z of the failure surface over the height H of the earth dam. The proposed methodology offers accuracy and consistency with a standard deviation of the relative error in the estimation of the seismic coefficients in the order of ±24

    Analysis of fault rupture propagation through uniform soil cover

    No full text
    This paper presents results from numerical simulations of the propagation of an active dip-slip fault rupture through a uniform soil layer covering the rigid bedrock. Following verification of the numerical methodology against field evidence, a parametric study is performed for loose and dense sand, for normally consolidated and overconsolidated clay, as well as for different fault dip angles (normal and reverse faults) and for different thicknesses of the soil cover. The soil is modeled as an elasto-plastic, strain-softening material that obeys the Mohr-Coulomb failure criterion. The study aims at establishing criteria for the approximate depiction of the location and the width of the zone with significant ground surface distortion, where the differential ground displacements induced by the fault rupture may threaten the integrity of man-mad structures. (c) 2009 Elsevier Ltd. All rights reserved

    Methodology for estimating seismic coefficients for performance-based design of earthdams and tall embankments

    No full text
    Following an overview of pertinent literature, this paper presents a new methodology for estimating seismic coefficients for the performance-based design of earth dams and tall embankments. The methodology is based on statistical regression of (decoupled) numerical data for 1084 potential sliding masses, originating from 110 non-linear seismic response analyses of 20 cross sections with height ranging from 20 to 120 m. At first, the methodology estimates the peak value of the seismic coefficient k(hmax) as a function of: the peak ground acceleration at the free field, the predominant period of the seismic excitation, the non-linear fundamental period of dam vibration, the stiffness of the firm foundation soil or rock layer, as well as the geometrical characteristics and the location (upstream or downstream) of the potentially sliding mass. Then, it proceeds to the estimation of an effective value of the seismic coefficient k(hE), as a percentile of k(hmax), to be used with a requirement for pseudo-static factor of safety greater or equal to 1.0. The estimation of khE is based on allowable permanent down-slope deviatoric displacement and a conservative consideration of sliding block analysis. (C) 2013 Elsevier Ltd. All rights reserved

    Parametric investigation of lateral spreading of gently sloping liquefied ground

    No full text
    This paper investigates the main parameters affecting the anticipated maximum surface displacements due to earthquake-induced lateral spreading of mildly sloping ground. The main tool used for this purpose is a numerical methodology employing a bounding surface plasticity model implemented in a finite difference code, which has been thoroughly validated against 16 published centrifuge lateral spreading experiments. This study shows that important problem parameters are the mean ground (surface) acceleration, the duration of strong shaking following the onset of liquefaction, the corrected SPT blowcount, the depth to the sliding plane, the inclination of the ground surface and the fines content of the liquefied soil layers. A new approximate multi-variable relation is proposed for the estimation of ground surface displacements due to lateral spreading in gently sloping ground, which includes the foregoing parameters. The form of the relation builds upon sliding block theory, but its final formulation is based on statistical analysis of the input data and the results from 120 parametric analyses performed with the validated numerical methodology. Comparison of the predictions of the proposed relation for ground surface displacement against pertinent field data (from 256 case histories) and centrifuge test measurements shows satisfactory accuracy. Furthermore, the variation of lateral displacements with depth is explored and distinct displacement patterns are proposed for uniform, 2-layer and 4-layer ground profiles. (C) 2010 Elsevier Ltd. All rights reserved

    Bounding surface plasticity model for the seismic liquefaction analysis of geostructures

    No full text
    This paper presents the constitutive relations and the simulative potential of a new plasticity model developed mainly for the seismic liquefaction analysis of geostructures. The model incorporates the framework of critical state soil mechanics, while it relies on bounding surface plasticity with a vanished elastic region to simulate the non-linear soil response. Key constitutive ingredients of the new model are: (a) the inter-dependence of the critical state, the bounding and the dilatancy (open cone) surfaces on the basis of the state parameter psi, (b) a (Ramberg-Osgood type) non-linear hysteretic formulation for the "elastic" strain rate, (c) a discontinuously relocatable stress projection center related to the "last" load reversal point, which is used for mapping the current stress point on model surfaces and as a reference point for introducing non-linearity in the "elastic" strain rate and finally (d) an empirical index of the directional effect of sand fabric evolution during shearing, which scales the plastic modulus. In addition, the paper outlines the calibration procedure for the model constants, and exhibits its accuracy on the basis of a large number of laboratory element tests on Nevada sand. More importantly, the paper explores the potential of the new model by presenting simulations of the VELACS centrifuge tests of Models No 1 and 12, which refer to the free-field liquefaction response of Nevada sand and the seismic response of a rigid foundation on the same sand, respectively. These simulations show that the new model can be used successfully for the analysis of widely different boundary value problems involving earthquake soil liquefaction, with the same set of model constants calibrated on the basis of laboratory element tests. (C) 2010 Elsevier Ltd. All rights reserved

    Sand fabric evolution effects on drain design for liquefaction mitigation

    No full text
    This paper revisits the seminal work of Seed and Booker (1977) [21] on the design of infinitely permeable drains for liquefaction mitigation. It is shown that their basic mathematical assumption for the rate of earthquake-induced excess pore pressure generation overlooks sand fabric evolution effects during cyclic loading and eventually leads to underestimation of the drain effectiveness. This is because such effects cause peak excess pore pressures to be attained at the early stages of partially drained shaking, followed by a gradual attenuation even if shaking continues undiminished, a response feature not predicted by the original formulation. In addition, special emphasis is given to the analytical relation describing the excess pore pressure build-up until liquefaction in undrained tests. This relation was considered unique in the original work, for reasons of simplicity, thus neglecting sand fabric evolution effects that may differentiate it for various sands, densities and loading conditions. Hence, a revised analytical formulation is proposed, which takes into account both above effects of sand fabric evolution. The paper provides a quantitative assessment of their influence on drain effectiveness and establishes a new set of charts for drain design. Experimental measurements from shaking table tests, as well as robust numerical simulations are shown, which underline the necessity for the revised solution and design charts. © 2011 Elsevier Ltd
    corecore