3,240 research outputs found
An Overview of Animal Facilitated Therapy
An 81 year old woman sat in her wheelchair in front of a window at a nursing home surrounded by her family whom she no longer recognized. She had been in the home for two years, her mental and physical health steadily deteriorating. She spoke a language all her own, no longer could anyone decipher any English or Norwegian from it. The old woman plucked invisible entities from the air and placed them in her lap. The only glimmer of recognition or reality for her was aroused when she was asked about her cat, Munse. Grandma, how\u27s Munse? Where\u27s Munse, Grandma? The only understandable words she speaks: Munse? Here kitty. Meeow. She calls for her companion of eight years. A gray stuffed-toy cat is placed in her lap instead, she strokes it once or twice and then falls still and silent. What might it have meant to this elderly woman to have kept her companion with her? Could it have helped her hold on to reality longer, maintained her health and improved the general quality of her life
From Skew-Cyclic Codes to Asymmetric Quantum Codes
We introduce an additive but not -linear map from
to and exhibit some of its interesting
structural properties. If is a linear -code, then is an
additive -code. If is an additive cyclic code then
is an additive quasi-cyclic code of index . Moreover, if is a module
-cyclic code, a recently introduced type of code which will be
explained below, then is equivalent to an additive cyclic code if is
odd and to an additive quasi-cyclic code of index if is even. Given any
-code , the code is self-orthogonal under the trace
Hermitian inner product. Since the mapping preserves nestedness, it can be
used as a tool in constructing additive asymmetric quantum codes.Comment: 16 pages, 3 tables, submitted to Advances in Mathematics of
Communication
Anomalous magnetization process in frustrated spin ladders
We study, at T=0, the anomalies in the magnetization curve of the S=1 two-leg
ladder with frustrated interactions. We focus mainly on the existence of the
M=\Ms/2 plateau, where \Ms is the saturation magnetization. We use
analytical methods (degenerate perturbation theory and non-Abelian
bosonization) as well as numerical methods (level spectroscopy and density
matrix renormalization group), which lead to the consistent conclusion with
each other. We also touch on the M=\Ms/4 and M=(3/4)\Ms plateaux and cusps.Comment: 4 pages, 7 figures (embedded), Conference paper (Highly Frustrated
Magnetism 2003, 26-30th August 2003, Grenoble, France
A magnetic model for the incommensurate I phase of spin-Peierls systems
A magnetic model is proposed for describing the incommensurate I phase of
spin-Peierls systems. Based on the harmonicity of the lattice distortion, its
main ingredient is that the distortion of the lattice adjusts to the average
magnetization such that the system is always gapful. The presence of dynamical
incommensurabilities in the fluctuation spectra is also predicted. Recent
experimental results for CuGeO_3 obtained by NMR, ESR and light scattering
absorption are well understood within this model.Comment: 8 pages, 3 figures, Latex with EPL style files all include
Quantum internal modes of solitons in 1d easy-plane antiferromagnet in strong magnetic field
In presence of a strong external magnetic field the dynamics of solitons in a
one-dimensional easy-plane Heisenberg antiferromagnet exhibits a number of
peculiarities. Dynamics of internal soliton degrees of freedom is essentially
quantum, and they are strongly coupled to the "translational" mode of soliton
movement. These peculiarities lead to considerable changes in the response
functions of the system which can be detected experimentally.Comment: 8 pages, RevTeX, 6 figures, uses psfig.sty, submitted to PR
Impediments to mixing classical and quantum dynamics
The dynamics of systems composed of a classical sector plus a quantum sector
is studied. We show that, even in the simplest cases, (i) the existence of a
consistent canonical description for such mixed systems is incompatible with
very basic requirements related to the time evolution of the two sectors when
they are decoupled. (ii) The classical sector cannot inherit quantum
fluctuations from the quantum sector. And, (iii) a coupling among the two
sectors is incompatible with the requirement of physical positivity of the
theory, i.e., there would be positive observables with a non positive
expectation value.Comment: RevTex, 21 pages. Title slightly modified and summary section adde
A Cosmological No-Hair Theorem
A generalisation of Price's theorem is given for application to Inflationary
Cosmologies. Namely, we show that on a Schwarzschild--de Sitter background
there are no static solutions to the wave or gravitational perturbation
equations for modes with angular momentum greater than their intrinsic spin.Comment: 9 pages, NCL94 -TP4, (Revtex
ESR investigation on the Breather mode and the Spinon-Breather dynamical crossover in Cu Benzoate
A new elementary-excitation, the so called "breather excitation", is observed
directly by millimeter-submillimeter wave electron spin resonance (ESR) in the
Heisenberg quantum spin-chain Cu benzoate, in which a field-induced gap is
found recently by specific heat and neutron scattering measurements. Distinct
anomalies were found in line width and in resonance field around the "dynamical
crossover" regime between the gap-less spinon-regime and the gapped
breather-regime. When the temperature becomes sufficiently lower than the
energy gap, a new ESR-line with very narrow line-width is found, which is the
manifestation of the breather excitation. The non-linear field dependence of
the resonance field agrees well with the theoretical formula of the first
breather-excitation proposed by Oshikawa and Affleck. The present work
establishes experimentally for the first time that a sine-Gordon model is
applicable to explain spin dynamics in a S=1/2 Heisenberg spin chain subjected
to staggered field even in high fields.Comment: Revtex, 4 pages, 4 figures, submitted to Phys. Rev. Let
Peierls-like transition induced by frustration in a two-dimensional antiferromagnet
We show that the introduction of frustration into the spin-1/2
two-dimensional (2D) antiferromagnetic Heisenberg model on a square lattice via
a next-nearest neighbor exchange interaction can lead to a Peierls-like
transition, from a tetragonal to an orthorhombic phase, when the spins are
coupled to adiabatic phonons. The two different orthorhombic ground states
define an Ising order parameter, which is expected to lead to a finite
temperature transition. Implications for , the first
realization of that model, will be discussed.Comment: 4 pages, to be published on Physical Review Letter
Recommended from our members
Quantifying sources of inter-model diversity in the cloud albedo effect
There is large diversity in simulated aerosol forcing among models that participated in the fifth Coupled Model Intercomparison Project (CMIP5), particularly related to aerosol interactions with clouds. Here we use the reported model data and fitted aerosol-cloud relations to separate the main sources of inter-model diversity in the magnitude of the cloud albedo effect. There is large diversity in the global load and spatial distribution of sulfate aerosol, as well as in global-mean cloud-top effective radius. The use of different parameterizations of aerosol-cloud interactions makes the largest contribution to diversity
in modeled radiative forcing (up to -39%, +48% about the mean estimate). Uncertainty in pre-industrial sulfate load also makes a substantial contribution (-15%, +61% about the mean estimate), with smaller contributions from inter-model differences in the historical change in sulfate load and in mean cloud fraction
- …