23 research outputs found

    The osmotic demyelination syndrome:the resilience of thalamic neurons is verified with transmission electron microscopy

    Get PDF
    The development of a murine model of osmotic demyelinating syndrome (ODS) allowed to study changes incurred in extrapontine zones of the CNS and featured neuron and glial cell changes in the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei before, during and after ODS induction, and characterized without immune response. There, the neuron Wallerian-type deteriorations were verified with fine structure modifications of the neuron cell body, including some nucleus topology and its nucleolus changes. Morphologic analyses showed a transient stoppage of transcriptional activities while myelinated axons in the surrounding neuropil incurred diverse damages, previously reported. Even though the regional thalamus myelin deterioration was clearly recognized with light microscopy 248 h after osmotic recovery of ODS, ultrastructure analyses demonstrated that, at that time, the same damaged parenchyma regions contained nerve cell bodies that have already reactivated nucleus transcriptions and neuroplasm translations because peculiar accumulations of fibro-granular materials, similar to those detected in restored ODS astrocytes, were revealed in these restructuring nerve cell bodies. Their aspects suggested to be accumulations of ribonucleoproteins. The findings suggested that progressive neural function's recovery in the murine model could imitate some aspects of human ODS recovery cases.info:eu-repo/semantics/publishe

    Osmotic Demyelination: From an Oligodendrocyte to an Astrocyte Perspective

    Get PDF
    Osmotic demyelination syndrome (ODS) is a disorder of the central myelin that is often associated with a precipitous rise of serum sodium. Remarkably, while the myelin and oligodendrocytes of specific brain areas degenerate during the disease, neighboring neurons and axons appear unspoiled, and neuroinflammation appears only once demyelination is well established. In addition to blood‒brain barrier breakdown and microglia activation, astrocyte death is among one of the earliest events during ODS pathology. This review will focus on various aspects of biochemical, molecular and cellular aspects of oligodendrocyte and astrocyte changes in ODS-susceptible brain regions, with an emphasis on the crosstalk between those two glial cells. Emerging evidence pointing to the initiating role of astrocytes in region-specific degeneration are discussed

    The osmotic demyelination syndrome: the resilience of thalamic neurons is verified with transmission electron microscopy.

    No full text
    The development of a murine model of osmotic demyelinating syndrome (ODS) allowed to study changes incurred in extrapontine zones of the CNS and featured neuron and glial cell changes in the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei before, during and after ODS induction, and characterized without immune response. There, the neuron Wallerian-type deteriorations were verified with fine structure modifications of the neuron cell body, including some nucleus topology and its nucleolus changes. Morphologic analyses showed a transient stoppage of transcriptional activities while myelinated axons in the surrounding neuropil incurred diverse damages, previously reported. Even though the regional thalamus myelin deterioration was clearly recognized with light microscopy 248 h after osmotic recovery of ODS, ultrastructure analyses demonstrated that, at that time, the same damaged parenchyma regions contained nerve cell bodies that have already reactivated nucleus transcriptions and neuroplasm translations because peculiar accumulations of fibro-granular materials, similar to those detected in restored ODS astrocytes, were revealed in these restructuring nerve cell bodies. Their aspects suggested to be accumulations of ribonucleoproteins. The findings suggested that progressive neural function's recovery in the murine model could imitate some aspects of human ODS recovery cases.info:eu-repo/semantics/publishe
    corecore