1,533 research outputs found

    IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation

    Get PDF
    We solve numerically the Schwinger-Dyson (SD hereafter) ghost equation in the Landau gauge for a given gluon propagator finite at k=0 (alpha_gluon=1) and with the usual assumption of constancy of the ghost-gluon vertex ; we show that there exist two possible types of ghost dressing function solutions, as we have previously inferred from analytical considerations : one singular at zero momentum, satisfying the familiar relation alpha_gluon+2 alpha_ghost=0 between the infrared exponents of the gluon and ghost dressing functions(in short, respectively alpha_G and alpha_F) and having therefore alpha_ghost=-1/2, and another which is finite at the origin (alpha_ghost=0), which violates the relation. It is most important that the type of solution which is realized depends on the value of the coupling constant. There are regular ones for any coupling below some value, while there is only one singular solution, obtained only at a critical value of the coupling. For all momenta k<1.5 GeV where they can be trusted, our lattice data exclude neatly the singular one, and agree very well with the regular solution we obtain at a coupling constant compatible with the bare lattice value.Comment: 17 pages, 3 figures (one new figure and a short paragraph added

    Divergent IR gluon propagator from Ward-Slavnov-Taylor identities?

    Get PDF
    We exploit the Ward-Slavnov-Taylor identity relating the 3-gluons to the ghost-gluon vertices to conclude either that the ghost dressing function is finite and non vanishing at zero momentum while the gluon propagator diverges (although it may do so weakly enough not to be in contradiction with current lattice data) or that the 3-gluons vertex is non-regular when one momentum goes to zero. We stress that those results should be kept in mind when one studies the Infrared properties of the ghost and gluon propagators, for example by means of Dyson-Schwinger equations.Comment: 6 pages, bibte

    Power Corrections to Perturbative QCD and OPE in Gluon Green Functions

    Get PDF
    We show that QCD Green functions in Landau Gauge exhibit sizable O(1/μ2)O(1/\mu^2) corrections to the expected perturbative behavior at energies as high as 10 GeV. We argue that these are due to a -condensate which does not vanish in Landau gauge.Comment: 3 pages 1 figure lattice2001 (gaugetheories

    Quark propagator and vertex: systematic corrections of hypercubic artifacts from lattice simulations

    Get PDF
    This is the first part of a study of the quark propagator and the vertex function of the vector current on the lattice in the Landau gauge and using both Wilson-clover and overlap actions. In order to be able to identify lattice artifacts and to reach large momenta we use a range of lattice spacings. The lattice artifacts turn out to be exceedingly large in this study. We present a new and very efficient method to eliminate the hypercubic (anisotropy) artifacts based on a systematic expansion on hypercubic invariants which are not SO(4) invariant. A simpler version of this method has been used in previous works. This method is shown to be significantly more efficient than the popular ``democratic'' methods. It can of course be applied to the lattice simulations of many other physical quantities. The analysis indicates a hierarchy in the size of hypercubic artifacts: overlap larger than clover and propagator larger than vertex function. This pleads for the combined study of propagators and vertex functions via Ward identities.Comment: 14 pags., 9 fig

    The anomalous dimension of the composite operator A^2 in the Landau gauge

    Get PDF
    The local composite operator A^2 is analysed in pure Yang-Mills theory in the Landau gauge within the algebraic renormalization. It is proven that the anomalous dimension of A^2 is not an independent parameter, being expressed as a linear combination of the gauge beta function and of the anomalous dimension of the gauge fields.Comment: 12 pages, LaTeX2e, final version to appear in Phys. Lett.

    On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem

    Get PDF
    This brief note is devoted to a study of genuine non-perturbative corrections to the Landau gauge ghost-gluon vertex in terms of the non-vanishing dimension-two gluon condensate. We pay special attention to the kinematical limit which the bare vertex takes for its tree-level expression at any perturbative order, according to the well-known Taylor theorem. Based on our OPE analysis, we also present a simple model for the vertex, in acceptable agreement with lattice data.Comment: Final version published in JHE

    Quark-gluon vertex in a momentum subtraction scheme

    Get PDF
    We compute the quark-gluon vertex in quenched QCD, in the Landau gauge using an off-shell mean-field O(a)-improved fermion action. The running coupling is calculated in an `asymmetric' momentum subtraction scheme (MOM~). We obtain a crude estimate for Lambda_MSbar=170+/-65 MeV, which is considerably lower than other determinations of this quantity. However, substantial systematic errors remain.Comment: Lattice2001(improvement); 3 pages, 3 figure

    Pseudoscalar qqbar mesons and effective QCD coupling enhanced by <A^2> condensate

    Get PDF
    Recent developments provided evidence that the dimension 2 gluon condensate is important for the nonperturbative regime of Yang-Mills theories (quantized in the Landau gauge). We show that it may be relevant for the Dyson-Schwinger approach to QCD. In order that this approach leads to a successful hadronic phenomenology, an enhancement of the effective quark-gluon interaction seems to be needed at intermediate (p^2 \sim 0.5 GeV^2) momenta. It is shown that the gluon condensate provides such an enhancement. It is also shown that the resulting effective strong running coupling leads to the sufficiently strong dynamical chiral symmetry breaking and successful phenomenology at least in the light sector of pseudoscalar mesons.Comment: revtex4, 4 eps figures, 8 pages, improved presentation, to appear in Phys. Rev.
    corecore