2 research outputs found
Critical Properties of Ternary Deep Eutectic Solvents Using Group Contribution with Extended Lee-Kesler Mixing Rules.
One of the most commonly used molecular inputs for ionic liquids and deep eutectic solvents (DESs) in the literature are the critical properties and acentric factors, which can be easily determined using the modified Lydersen-Joback-Reid (LJR) method with Lee-Kesler mixing rules. However, the method used in the literature is generally applicable only to binary mixtures of DESs. Nevertheless, ternary DESs are considered to be more interesting and may provide further tailorability for developing task-specific DESs for particular applications. Therefore, in this work, a new framework for estimating the critical properties and the acentric factor of ternary DESs based on their molecular structures is presented by adjusting the framework reported in the literature with an extended version of the Lee-Kesler mixing rules. The presented framework was applied to a data set consisting of 87 ternary DESs with 334 distinct compositions. For validation, the estimated critical properties and acentric factors were used to predict the densities of the ternary DESs. The results showed excellent agreement between the experimental and calculated data, with an average absolute relative deviation (AARD) of 5.203% for ternary DESs and 5.712% for 260 binary DESs (573 compositions). The developed methodology was incorporated into a user-friendly Excel worksheet for computing the critical properties and acentric factors of any ternary or binary DES, which is provided in the Supporting Information. This work promotes the creation of robust, accessible, and user-friendly models capable of predicting the properties of new ternary DESs based on critical properties, thus saving time and resources
Experimental and detailed DFT/MD simulation of α-aminophosphonates as promising corrosion inhibitor for XC48 carbon steel in HCl environment
Background: Corrosion is a pervasive issue in several industries, causing safety hazards and substantial economic losses. α-aminophosphonate substances have recently garnered attention for their ability to inhibit corrosion. In this study, two specific α-aminophosphonate molecules, namely diethyl(furan-2-yl(phenylamino)methyl) phosphonate (AMP1) and diethyl((2methoxyphenyl) amino) (thiophene-2-methyl) phosphonate (AMP2) were evaluated for their potential as anticorrosion agents for XC48 carbon steel under acidic conditions. Methods: Their corrosion inhibition was examined towards XC48 carbon steel under 1.0 M HCl solution utilizing the electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), atomic force microscope (AFM), scanning electron microscope (SEM), contact angle, Density functional theory (DFT), molecular dynamics (MD), and atoms in molecule (AIM). Significant findings: Results showed that AMP1 and AMP2 had inhibition efficiencies of 83.34% and 63.82% for EIS and 82.70% and 74.57% for PDP, respectively. The inhibition mechanism involved adsorption of the additives onto the metal surface via Langmuir isotherm. The study also demonstrated the influence of temperature on inhibition efficiency, with nearly 70% inhibition observed at 298 to 323 K. AFM and SEM analyses revealed chemisorption coating formation inhibiting acid attack, and contact angle analyses showed the surface to be hydrophobic. Theoretical analyses using DFT, MD, and AIM were used to clarify the inhibitors' adsorption effect on XC48 steel, showing a high agreement with experimental findings