31 research outputs found

    A Dipole on the Sky: Predictions for Hypervelocity Stars from the Large Magellanic Cloud

    Full text link
    We predict the distribution of hypervelocity stars (HVSs) ejected from the Large Magellanic Cloud (LMC), under the assumption that the dwarf galaxy hosts a central massive black hole (MBH). For the majority of stars ejected from the LMC the orbital velocity of the LMC has contributed a significant fraction of their galactic rest frame velocity, leading to a dipole density distribution on the sky. We quantify the dipole using spherical harmonic analysis and contrast with the monopole expected for HVSs ejected from the Galactic Center. There is a tendril in the density distribution that leads the LMC which is coincident with the well-known and unexplained clustering of HVSs in the constellations of Leo and Sextans. Our model is falsifiable, since it predicts that Gaia will reveal a large density of HVSs in the southern hemisphere.Comment: 6 pages, ApJ (Letters), in pres

    Hypervelocity runaways from the Large Magellanic Cloud

    Full text link
    We explore the possibility that the observed population of Galactic hypervelocity stars (HVSs) originate as runaway stars from the Large Magellanic Cloud (LMC). Pairing a binary evolution code with an N-body simulation of the interaction of the LMC with the Milky Way, we predict the spatial distribution and kinematics of an LMC runaway population. We find that runaway stars from the LMC can contribute Galactic HVSs at a rate of 3Γ—10βˆ’6β€…β€Šyrβˆ’13 \times 10^{-6}\;\mathrm{yr}^{-1}. This is composed of stars at different points of stellar evolution, ranging from the main-sequence to those at the tip of the asymptotic giant branch. We find that the known B-type HVSs have kinematics which are consistent with an LMC origin. There is an additional population of hypervelocity white dwarfs whose progenitors were massive runaway stars. Runaways which are even more massive will themselves go supernova, producing a remnant whose velocity will be modulated by a supernova kick. This latter scenario has some exotic consequences, such as pulsars and supernovae far from star-forming regions, and a small rate of microlensing from compact sources around the halo of the LMC.Comment: MNRAS, in pres

    A hypervelocity star with a Magellanic origin

    Get PDF
    Using proper motion measurements from Gaia DR2, we probe the origin of 26 previously known hypervelocity stars (HVSs) around the Milky Way. We find that a significant fraction of these stars have a high probability of originating close to the Milky Way centre, but there is one obvious outlier. HVS3 is highly likely to be coming almost from the centre of the Large Magellanic Cloud (LMC). During its closest approach, 21.1βˆ’4.6+6.121.1^{+6.1}_{-4.6} Myr ago, it had a relative velocity of 870βˆ’66+69870^{+69}_{-66} kmsβˆ’1^{-1} with respect to the LMC. This large kick velocity is only consistent with the Hills mechanism, requiring a massive black hole at the centre of the LMC. This provides strong direct evidence that the LMC itself harbours a massive black hole of at least 4Γ—103βˆ’104MβŠ™4\times 10^3 -10^4 M_\odot.Comment: 7 pages, 9 figures. Submitted to MNRAS. Comments welcome

    A Magellanic origin for the Virgo sub-structure

    Get PDF
    The Milky Way halo has been mapped out in recent work using a sample of RR Lyrae stars drawn from a cross-match of Gaia with 2MASS. We investigate the significant residual in this map which we constrain to lie at Galactocentric radii 12 < R < 27 kpc and extend over 2600 deg2 of the sky. A counterpart of this structure exists in both the Catalina Real Time Survey and the sample of RR Lyrae variables identified in Pan-STARRS, demonstrating that this structure is not caused by the spatial inhomogeneity of Gaia. The structure is likely the Virgo Stellar Stream and/or Virgo Over-Density. We show the structure is aligned with the Magellanic Stream and suggest that it is either debris from a disrupted dwarf galaxy that was a member of the Vast Polar Structure or that it is SMC debris from a tidal interaction of the SMC and LMC 3 Gyr ago. If the latter then the sub-structure in Virgo may have a Magellanic origin
    corecore