28 research outputs found

    Generating the curvature perturbation at the end of inflation

    Full text link
    The dominant contribution to the primordial curvature perturbation may be generated at the end of inflation. Taking the end of inflation to be sudden, formulas are presented for the spectrum, spectral tilt and non-gaussianity. They are evaluated for a minimal extension of the original hybrid inflation model.Comment: 5 pages. v3: as it will appear in JCA

    Contribution of the hybrid inflation waterfall to the primordial curvature perturbation

    Full text link
    A contribution ζχ\zeta_\chi to the curvature perturbation will be generated during the waterfall that ends hybrid inflation, that may be significant on small scales. In particular, it may lead to excessive black hole formation. We here consider standard hybrid inflation, where the tachyonic mass of the waterfall field is much bigger than the Hubble parameter. We calculate ζχ\zeta_\chi in the simplest case, and see why earlier calculations of ζχ\zeta_\chi are incorrect.Comment: Simpler and more complete results, especiallly for delta N approac

    On the Issue of the \zeta Series Convergence and Loop Corrections in the Generation of Observable Primordial Non-Gaussianity in Slow-Roll Inflation. Part II: the Trispectrum

    Full text link
    We calculate the trispectrum T_\zeta of the primordial curvature perturbation \zeta, generated during a {\it slow-roll} inflationary epoch by considering a two-field quadratic model of inflation with {\it canonical} kinetic terms. We consider loop contributions as well as tree level terms, and show that it is possible to attain very high, {\it including observable}, values for the level of non-gaussianity \tau_{NL} if T_\zeta is dominated by the one-loop contribution. Special attention is paid to the claim in JCAP {\bf 0902}, 017 (2009) [arXiv:0812.0807 [astro-ph]] that, in the model studied in this paper and for the specific inflationary trajectory we choose, the quantum fluctuations of the fields overwhelm the classical evolution. We argue that such a claim actually does not apply to our model, although more research is needed in order to understand the role of quantum diffusion. We also consider the probability that an observer in an ensemble of realizations of the density field sees a non-gaussian distribution. In that respect, we show that the probability associated to the chosen inflationary trajectory is non-negligible. Finally, the levels of non-gaussianity f_{NL} and \tau_{NL} in the bispectrum B_\zeta and trispectrum T_\zeta of \zeta, respectively, are also studied for the case in which \zeta is not generated during inflation.Comment: LaTex File, 27 pages, 8 figures. v2: Previous Section 2 has been removed. Two new sections (3 and 4) discussing the classicality condition given by Byrnes, Choi, and Hall, in JCAP 0902, 017 (2009), and the probability that an observer sees a non-gaussian distribution have been added. v3: Version accepted for publication in Physical Review

    Comments on SUSY inflation models on the brane

    Full text link
    In this paper we consider a class of inflation models on the brane where the dominant part of the inflaton scalar potential does not depend on the inflaton field value during inflation. In particular, we consider supernatural inflation, its hilltop version, A-term inflation, and supersymmetric (SUSY) D- and F-term hybrid inflation on the brane. We show that the parameter space can be broadened, the inflation scale generally can be lowered, and still possible to have the spectral index ns=0.96n_s=0.96.Comment: 7 page

    A semi-analytical approach to perturbations in mutated hilltop inflation

    Full text link
    We study cosmological perturbations and observational aspects for mutated hilltop model of inflation. Employing mostly analytical treatment, we evaluate observable parameters during inflation as well as post-inflationary perturbations. This further leads to exploring observational aspects related to Cosmic Microwave Background (CMB) radiation. This semi-analytical treatment reduces complications related to numerical computation to some extent for studying the different phenomena related to CMB angular power spectrum for mutated hilltop inflation.Comment: 7 pages, 2 figures. Improved version to appear in IJMP

    CMB Anisotropies at Second Order I

    Get PDF
    We present the computation of the full system of Boltzmann equations at second-order describing the evolution of the photon, baryon and cold dark matter fluids. These equations allow to follow the time evolution of the Cosmic Microwave Background (CMB) anisotropies at second-order at all angular scales from the early epoch, when the cosmological perturbations were generated, to the present through the recombination era. This paper sets the stage for the computation of the full second-order radiation transfer function at all scales and for a a generic set of initial conditions specifying the level of primordial non-Gaussianity. In a companion paper, we will present the computation of the three-point correlation function at recombination which is so relevant for the issue of non-Gaussianity in the CMB anisotropies.Comment: 26 pages, LaTeX file, typos correcte

    Non-Gaussianity in Multi-field Stochastic Inflation with the Scaling Approximation

    Full text link
    The statistics of multi-field inflation are investigated using the stochastic approach. We analytically obtain the probability distribution function of fields with the scaling approximation by extending the previous work by Amendola. The non-Gaussian nature of the probability distribution function is investigated decomposing the fields into the adiabatic and isocurvature components. We find that the non-Gaussianity of the isocurvature component can be large compared with that of the adiabatic component. The adiabatic and isocurvature components may be correlated at nonlinear order in the skewness and kurtosis even if uncorrelated at linear level.Comment: To appear in JCAP, references adde

    The Lyth Bound and the End of Inflation

    Full text link
    We derive an extended version of the well-known Lyth Bound on the total variation of the inflaton field, incorporating higher order corrections in slow roll. We connect the field variation Δϕ\Delta\phi to both the spectral index of scalar perturbations and the amplitude of tensor modes. We then investigate the implications of this bound for ``small field'' potentials, where the field rolls off a local maximum of the potential. The total field variation during inflation is {\em generically} of order mPlm_{\rm Pl}, even for potentials with a suppressed tensor/scalar ratio. Much of the total field excursion arises in the last e-fold of inflation and in single field models this problem can only be avoided via fine-tuning or the imposition of a symmetry. Finally, we discuss the implications of this result for inflationary model building in string theory and supergravity.Comment: 10 pages, RevTeX, 2 figures (V3: version accepted for publication by JCAP

    On the Issue of the \zeta Series Convergence and Loop Corrections in the Generation of Observable Primordial Non-Gaussianity in Slow-Roll Inflation. Part I: the Bispectrum

    Full text link
    We show in this paper that it is possible to attain very high, {\it including observable}, values for the level of non-gaussianity f_{NL} associated with the bispectrum B_\zeta of the primordial curvature perturbation \zeta, in a subclass of small-field {\it slow-roll} models of inflation with canonical kinetic terms. Such a result is obtained by taking care of loop corrections both in the spectrum P_\zeta and the bispectrum B_\zeta. Sizeable values for f_{NL} arise even if \zeta is generated during inflation. Five issues are considered when constraining the available parameter space: 1. we must ensure that we are in a perturbative regime so that the \zeta series expansion, and its truncation, are valid. 2. we must apply the correct condition for the (possible) loop dominance in B_\zeta and/or P_\zeta. 3. we must satisfy the spectrum normalisation condition. 4. we must satisfy the spectral tilt constraint. 5. we must have enough inflation to solve the horizon problem.Comment: LaTeX file, 40 pages, 6 figures, Main body: 26 pages, Appendix: 8 pages, References: 6 pages. v2: minor grammatical changes, references added and updated, a few changes reflecting the fact that = 0, conclusions unchanged. Version accepted for publication in Journal of Cosmology and Astroparticle Physic

    Large Nongaussianity from Nonlocal Inflation

    Full text link
    We study the possibility of obtaining large nongaussian signatures in the Cosmic Microwave Background in a general class of single-field nonlocal hill-top inflation models. We estimate the nonlinearity parameter f_{NL} which characterizes nongaussianity in such models and show that large nongaussianity is possible. For the recently proposed p-adic inflation model we find that f_{NL} ~ 120 when the string coupling is order unity. We show that large nongaussianity is also possible in a toy model with an action similar to those which arise in string field theory.Comment: 27 pages, no figures. Added references and some clarifying remark
    corecore